Skip to main content

A Model of Grid Cells Based on a Path Integration Mechanism

  • Conference paper
Artificial Neural Networks – ICANN 2006 (ICANN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4131))

Included in the following conference series:

Abstract

The grid cells of the dorsocaudal medial entorhinal cortex (dMEC) in rats show higher firing rates when the position of the animal correlates with the vertices of regular triangular tessellations covering the environment. Strong evidence indicates that these neurons are part of a path integration system. This raises the question, how such a system could be implemented in the brain. Here, we present a cyclically connected artificial neural network based on a path integration mechanism, implementing grid cells on a simulated mobile agent. Our results show that the synaptic connectivity of the network, which can be represented by a twisted torus, allows the generation of regular triangular grids across the environment. These tessellations share same spacing and orientation, as neighboring grid cells in the dMEC. A simple gain and bias mechanism allows to control the spacing and the orientation of the grids, which suggests that these different characteristics can be generated by a unique algorithm in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hafting, T., Fyhn, M., Molden, S., Moser, M.B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052), 801–806 (2005)

    Article  Google Scholar 

  2. Fyhn, M., Molden, S., Witter, M.P., Moser, E.I., Moser, M.B.: Spatial representation in the entorhinal cortex. Science 305(5688), 1258–1264 (2004)

    Article  Google Scholar 

  3. Moser, M., Sargolini, F., Fyhn, M., Hafting, T., Witer, M., Moser, E.: Grid cells in medial entorhinal cortex: indications of columnar organization. Soc. Neurosci. Abstr. 198(4) (2005)

    Google Scholar 

  4. O’Keefe, J., Burgess, N.: Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15(7), 853–866 (2005)

    Article  Google Scholar 

  5. Jeffery, K.J., Burgess, N.: A metric for the cognitive map: found at last? Trends Cogn Sci. 10(1), 1–3 (2006)

    Article  Google Scholar 

  6. Parron, C., Save, E.: Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159(3), 349–359 (2004)

    Article  Google Scholar 

  7. Braitenberg, V.: Vehicles, experiments in synthetic psychology. MIT Press, Cambridge (1984)

    Google Scholar 

  8. McNaughton, B., Barnes, C., Gerrard, J., Gothard, K., Jung, M., Knierim, J., Kudrimoti, H., Qin, Y., Skaggs, W., Suster, M., Weaver, K.: Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J. Exp. Biol. 199, 173–185 (1996)

    Google Scholar 

  9. Samsonovich, A., McNaughton, B.: Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17(15), 5900–5920 (1997)

    Google Scholar 

  10. Stringer, S., Rolls, E., Trappenberg, T., de Araujo, I.: Self-organizing continuous attractor networks and path integration: two-dimensional models of place cells. Comput. Neural Syst. 13(4), 429–446 (2002)

    Article  Google Scholar 

  11. Conklin, J., Eliasmith, C.: A controlled attractor network model of path integration in the rat. J. Comput. Neurosci. 18(2), 183–203 (2005)

    Article  MathSciNet  Google Scholar 

  12. Fuhs, M.C., Touretzky, D.S.: A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26(16), 4266–4276 (2006)

    Article  Google Scholar 

  13. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34(1), 171–175 (1971)

    Article  Google Scholar 

  14. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Clarendon Press, Oxford (1978)

    Google Scholar 

  15. Wyss, R., König, P., Verschure, P.F.M.J.: A model of the ventral visual system based on temporal stability and local memory. PLoS Biol. 4(5), e120 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guanella, A., Verschure, P.F.M.J. (2006). A Model of Grid Cells Based on a Path Integration Mechanism. In: Kollias, S.D., Stafylopatis, A., Duch, W., Oja, E. (eds) Artificial Neural Networks – ICANN 2006. ICANN 2006. Lecture Notes in Computer Science, vol 4131. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840817_77

Download citation

  • DOI: https://doi.org/10.1007/11840817_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38625-4

  • Online ISBN: 978-3-540-38627-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics