Advertisement

Processing of Information in Synchroneously Firing Chains in Networks of Neurons

  • Jens Christian Claussen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)

Abstract

The Abeles model of cortical activity assumes that in absence of stimulation neural activity in zero order can be described by a Poisson process. Here the model is extended to describe information processing by synfire chains within a network of activity uncorrelated to the synfire chain. A quantitative derivation of the transfer function from this concept is given.

Keywords

Cortical Activity Synaptic Strength Coincidence Detector Single Spike Output Spike 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abeles, M.: The role of the cortical neuron: Integrator or coincidence detector? Israel Journal of Medical Sciences 18, 83–92 (1982)Google Scholar
  2. 2.
    Abeles, M.: Local Cortical Circuits. Springer, Berlin (1982)Google Scholar
  3. 3.
    Abeles, M.: Corticonics. Cambridge University Press, Cambridge (1991)Google Scholar
  4. 4.
    Gerstner, W., Ritz, R., van Hemmen, J.L.: Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biological Cybernetics 69, 503–515 (1993)MATHGoogle Scholar
  5. 5.
    Herrmann, M., Hertz, J.A., Prügel-Bennett, A.: Analysis of synfire chains. Network 6, 403–414 (1995)MATHCrossRefGoogle Scholar
  6. 6.
    Ikeda, K.: A synfire chain in layered coincidence detectors with random synaptic delays. Neural Networks 16, 39–46 (2003)CrossRefGoogle Scholar
  7. 7.
    Sougne, J.P.: A learning algorithm for synfire chains. In: Franch, R.M., Sougne, J.P. (eds.) Connectionist Models of Learning, Development and Evolution, pp. 23–32. Springer, London (2001)Google Scholar
  8. 8.
    Wermter, S., Panchev, C.: Hybrid preference machines based on inspiration from neuroscience. Cognitive Systems Research 3, 255–270 (2002)CrossRefGoogle Scholar
  9. 9.
    Braitenberg, V.: Cortical architectonics: general and areal. In: Brazier, M.A.B., Petche, H. (eds.) Architectonics of the cerebral cortex, pp. 443–465. Raven Press, New York (1978)Google Scholar
  10. 10.
    Claussen, J.C.: born Gruel. In: Diploma thesis, pp. 89–92. Kiel, Germany (1992)Google Scholar
  11. 11.
    McCulloch, W.S., Pitts, W.H.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jens Christian Claussen
    • 1
  1. 1.Institut für Theoretische Physik und AstrophysikChristian-Albrechts-Universität zu KielKielGermany

Personalised recommendations