Dynamics of Citation Networks

  • Gábor Csárdi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)

Abstract

The aim of this paper is to give theoretical and experimental tools for measuring the driving force in evolving complex networks. First a discrete-time stochastic model framework is introduced to state the question of how the dynamics of these networks depend on the properties of the parts of the system. Then a method is presented to determine this dependence in the possession of the required data about the system. This measurement method is applied to the citation network of high energy physics papers to extract the in-degree and age dependence of the dynamics. It is shown that the method yields close to “optimal” results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Newman, M.E.J.: The structure and function of complex networks. SIAM Review 45, 167–256 (2003)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Watts, D.J.: The “new” science of networks. Annual Review of Sociology 30, 243–270 (2004)CrossRefGoogle Scholar
  3. 3.
    Barabási, A.L., Oltvai, Z.N.: Network biology: Understanding the cells’s functional organization. Nature Reviews Genetics 5, 101–113 (2004)CrossRefGoogle Scholar
  4. 4.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Physics Reports 424, 175–308 (2006)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Mitzenmacher, M.: A brief history of generative models for power law and lognormal distributions. Internet Mathematics 1, 226–251 (2004)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Caldarelli, G., Capocci, A., Rios, P., Muñoz, M.: Scale-free networks from varying vertex intrinsic fitness. Physical Review Letters 89, 258702 (2002)CrossRefGoogle Scholar
  8. 8.
    Kleinberg, J.M., Kumar, R., Raghavan, S., Rajagopalan, P., Tomkins, A.S.: The Web as a Graph: Measurements, Models, and Methods. In: Asano, T., Imai, H., Lee, D.T., Nakano, S.-i., Tokuyama, T. (eds.) COCOON 1999. LNCS, vol. 1627, p. 1. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  9. 9.
    Berger, N., Borgs, C., Chayes, J.T., D’Souza, R.M., Kleinberg, R.D.: Competition-induced preferential attachment. In: Proceedings of the 31st International Colloquium on Automata, Languages and Programming, pp. 208–221 (2004)Google Scholar
  10. 10.
    Jeong, H., Néda, Z., Barabási, A.L.: Measuring preferential attachment for evolving networks. Europhys. Lett. 61, 567–572 (2003)CrossRefGoogle Scholar
  11. 11.
    Redner, S.: Citation statistics from 110 years of physical review. Physics Today 58, 49 (2005)CrossRefGoogle Scholar
  12. 12.
    Roth, C.: Measuring generalized preferential attachment in dynamic social networks. arxiv:nlin.AO/0507021 (2005)Google Scholar
  13. 13.
    Krapivsky, P.L., Redner, S.: Organization of Growing Random Networks. Phyisical Review E 63, 66123 (2001)CrossRefGoogle Scholar
  14. 14.
    Ergun, G., Rodgers, G.J.: Growing random networks with fitness. Physica A 303, 261–272 (2002)CrossRefGoogle Scholar
  15. 15.
    Bianconi, G., Barabási, A.L.: Competition and multiscaling in evolving networks. Europhysics Letters 54, 436–442 (2001)CrossRefGoogle Scholar
  16. 16.
    Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of networks with aging of sites. Phys. Rev. E 62(2), 1842–1845 (2000)CrossRefGoogle Scholar
  17. 17.
    Zhu, H., Wang, X., Zhu, J.Y.: Effect of aging on network structure. Phys. Rev. E 68, 56121 (2003)CrossRefGoogle Scholar
  18. 18.
    Amaral, L.A.N., Scala, A., Barhélémy, M., Stanley, H.E.: Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97(21), 11149–11152 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gábor Csárdi
    • 1
    • 2
  1. 1.Department of BiophysicsKFKI Research Institute for Particle and Nuclear Physics of the Hungarian Academy of SciencesBudapestHungary
  2. 2.Center for Complex Systems StudiesKalamazoo CollegeKalamazooUSA

Personalised recommendations