A Complex Neural Network Model for Memory Functioning in Psychopathology

  • Roseli S. Wedemann
  • Luís Alfredo V. de Carvalho
  • Raul Donangelo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)


In an earlier paper [1], we described the mental pathology known as neurosis in terms of its relation to memory function. We proposed a mechanism whereby neurotic behavior may be understood as an associative memory process in the brain, and the symbolic associative process involved in psychoanalytic working-through can be mapped onto a process of reconfiguration of the neuronal network. Memory was modeled by a Boltzmann machine represented by a complete graph. However, it is known that brain neuronal topology is selectively structured. Here, we further develop the memory model, by including known mechanisms that control synaptic properties, showing that the network self organizes to a hierarchical, clustered structure. Two modules corresponding to sensorial and declarative memory interact, producing sensorial and symbolic activity, representing unconscious and conscious mental processes. This extension of the model allows an evaluation of the idea of working-through in a hierarchical network structure.


Memory Functioning Memory Trace Declarative Memory Sensorial Memory Symbolic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wedemann, R.S., Donangelo, R., Carvalho, L.A.V., Martins, I.H.: Memory Functioning in Psychopathology. In: Sloot, P.M.A., Tan, C.J.K., Dongarra, J., Hoekstra, A.G. (eds.) ICCS-ComputSci 2002. LNCS, vol. 2329, pp. 236–245. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Freud, S.: Introductory Lectures on Psycho-Analysis. Standard Edition. W. W. Norton and Company, New York (1966); First German edition (1917)Google Scholar
  3. 3.
    Freud, S.: Beyond the Pleasure Principle. Standard Edition. The Hogarth Press, London (1974); First German edition (1920)Google Scholar
  4. 4.
    Spitzer, M.: A Cognitive Neuroscience View of Schizophrenic Thought Disorder. Schizophrenia Bulletin 23(1), 29–50 (1997)Google Scholar
  5. 5.
    Servan-Schreiber, D., Printz, H., Cohen, J.: A Network Model of Catecholamine Effects: Gain, Signal-to-Noise Ratio, and Behavior. Science 249, 892–895 (1990)CrossRefGoogle Scholar
  6. 6.
    Kandel, E.R., Schwartz, J.H., Jessel, T.M. (eds.): Principles of Neural Science. MacGraw Hill, USA (2000)Google Scholar
  7. 7.
    Varela, F.J., Thompson, E., Rosch, E.: The Embodied Mind. The MIT Press, Cambridge (1997)Google Scholar
  8. 8.
    Ganong, W.F.: Review of Medical Physiology. MacGraw Hill, USA (2003)Google Scholar
  9. 9.
    Edelman, G.M.: Wider than the Sky, a Revolutionary View of Consciousness. Penguin Books, London (2005)Google Scholar
  10. 10.
    Taylor, J.G.: The Codam Model and Deficits of Consciousness I & II. In: Palade, V., Howlett, R.J., Jain, L. (eds.) KES 2003. LNCS, vol. 2774, pp. 1130–1148. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Hertz, J.A., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Lecture Notes. Santa Fe Institute, Studies in the Science of Complexity, vol. I. Perseus Books, Cambridge (1991)Google Scholar
  12. 12.
    Carvalho, L.A.V., Mendes, D.Q., Wedemann, R.S.: Creativity and Delusions: The Dopaminergic Modulation of Cortical Maps. In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J., Zomaya, A.Y. (eds.) ICCS 2003. LNCS, vol. 2657, pp. 511–520. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Chomsky, N.: On Nature and Language. Cambridge University Press, UK (2002)CrossRefGoogle Scholar
  14. 14.
    Newman, M.E.J.: Random Graphs as Models of Networks. In: Bornholdt, S., et al. (eds.) Proceedings of the International Conference on Dynamical Networks in Complex Systems, Handbook of Graphs and Networks, from the Genome to the Internet, Wiley-VCH, USA (2003)Google Scholar
  15. 15.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  16. 16.
    Freud, S.: Project for a Scientific Psychology. Standard Edition, vol. I. The Hogarth Press, London (1966); First German edition (1950)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roseli S. Wedemann
    • 1
  • Luís Alfredo V. de Carvalho
    • 2
  • Raul Donangelo
    • 3
  1. 1.Instituto de Matemática e EstatísticaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Eng. Sistemas e Computação, COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Instituto de FísicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations