Advertisement

Modeling Working Memory and Decision Making Using Generic Neural Microcircuits

  • Prashant Joshi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4131)

Abstract

Classical behavioral experiments to study working memory typically involve three phases. First the subject receives a stimulus, then holds it in the working memory, and finally makes a decision by comparing it with another stimulus. A neurocomputational model using generic neural microcircuits with feedback is presented here that integrates the three computational stages into a single unified framework. The architecture is tested using the two-interval discrimination and delayed-match-to-sample experimental paradigms as benchmarks.

Keywords

Neural Circuit Synaptic Weight Probe Stimulus Population Code Fading Memory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Machens, C.K., Romo, R., Brody, C.D.: Flexible control of mutual inhibition: A neural model of two-interval discrimination. Science 307, 1121–1124 (2005)CrossRefGoogle Scholar
  2. 2.
    Rainer, G., Lee, H., Logothetis, N.K.: The effect of learning on the function of monkey extrastriate visual cortex. PLoS Biology 2(2), 275–284 (2004)CrossRefGoogle Scholar
  3. 3.
    Buonomano, D.V., Merzenich, M.M.: Temporal information transformed into a spatial code by a neural network with realistic properties. Science 267, 1028–1030 (1995)CrossRefGoogle Scholar
  4. 4.
    Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation 14(11), 2531–2560 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Maass, W., Joshi, P., Sontag, E.D.: Principles of real-time computing with feedback applied to cortical microcircuit models. NIPS (2005)Google Scholar
  6. 6.
    Maass, W., Joshi, P., Sontag, E.D.: Computational aspects of feedback in neural circuits (2005) (submitted for publication)Google Scholar
  7. 7.
    Markram, H., Wang, Y., Tsodyks, M.: Differential signaling via the same axon of neocortical pyramidal neurons. PNAS 95, 5323–5328 (1998)CrossRefGoogle Scholar
  8. 8.
    Gupta, A., Wang, Y., Markram, H.: Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science 287, 273–278 (2000)CrossRefGoogle Scholar
  9. 9.
    Joshi, P., Maass, W.: Movement generation with circuits of spiking neurons. Neural Computation 17(8), 1715–1738 (2005)MATHCrossRefGoogle Scholar
  10. 10.
    Pouget, A., Latham, P.E.: Population codes. In: Arbib, M.A. (ed.) The handbook of brain theory and neural networks, pp. 893–897. MIT Press, Cambridge (2003)Google Scholar
  11. 11.
    Fuster, J.M.: Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J. Neurophysiol. 36, 61–78 (1973)Google Scholar
  12. 12.
    Fuster, J.M., Bodner, M., Kroger, J.K.: Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405, 347–351 (2000)CrossRefGoogle Scholar
  13. 13.
    Seung, H.S., Lee, D.D., Reis, B.Y., Tank, D.W.: Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26(1), 259–271 (2000)CrossRefGoogle Scholar
  14. 14.
    Craik, K.J.W.: The Nature of Explanation. Cambridge University Press, Cambridge (1943)Google Scholar
  15. 15.
    Bizzi, E., Mussa-Ivaldi, F.A.: Neural basis of motor control and its cognitive implications. Trends in Cognitive Sciences 2(3), 97–102 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Prashant Joshi
    • 1
  1. 1.Institute for Theoretical Computer ScienceTechnische Universität GrazGrazAustria

Personalised recommendations