Incremental Evolution of Target-Following Neuro-controllers for Flapping-Wing Animats

  • Jean-Baptiste Mouret
  • Stéphane Doncieux
  • Jean-Arcady Meyer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


Using an incremental multi-objective evolutionary algorithm and the ModNet encoding, we generated working neuro-controllers for target-following behavior in a simulated flapping-wing animat. To this end, we evolved tail controllers that were combined with two closed-loop wing-beat controllers previously generated, and able to secure straight flight at constant altitude and speed. The corresponding results demonstrate that a wing-beat strategy that consists in continuously adapting the twist of the external wing panel leads to better manoeuvring capabilities than another strategy that adapts the beating amplitude. Such differences suggest that further improvements in flying control should better rely on some sort of automatic incremental evolution procedure than on any hand-designed decomposition of the problem.


Pareto Front Target Objective Lift Force Neural Controller Incremental Evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barlow, G.J., Oh, C.K., Grant, E.: Incremental evolution of autonomous controllers for unmanned aerial vehicles using multi-objective genetic programming. In: Proceedings of the 2004 IEEE Conference on Cybernetics and Intelligent Systems (CIS), Singapore, December 1-3, 2004, pp. 688–693. IEEE, Los Alamitos (2004)Google Scholar
  2. 2.
    Chavas, J., Corne, C., Horvai, P., Kodjabachian, J., Meyer, J.-A.: Incremental evolution of neural controllers for robust obstacle-avoidance in Khepera. In: Husbands, P., Meyer, J.-A. (eds.) Proceedings of The First European Workshop on Evolutionary Robotics - EvoRobot 1998, pp. 227–247. Springer, Heidelberg (1998)Google Scholar
  3. 3.
    Cohen, A.H., Holmes, P.J., Rand, R.H.: The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: A mathematicaal model. Journal of Mathematical Biology 13, 345–369 (1982)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    de Jong, E.D., Pollack, J.B.: Ideal evaluation from coevolution. Evolutionary Computation 12(2) (2004)Google Scholar
  5. 5.
    Delcomyn, F.: Neural basis for rhythmic behaviour in animals. Science 210, 492–498 (1980)CrossRefGoogle Scholar
  6. 6.
    Doncieux, S., Meyer, J.-A.: Evolving neural networks for the control of a lenticular blimp. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 626–637. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Doncieux, S., Mouret, J.-B., Muratet, L., Meyer, J.-A.: The ROBUR project: towards an autonomous flapping-wing animat. In: Proceedings of the Journées MicroDrones, Toulouse (2004)Google Scholar
  8. 8.
    Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: formulation, discussion and generalization. In: Proceedings of the Fourth International Conference on Evolutionary Programming, pp. 416–423 (1993)Google Scholar
  9. 9.
    Haith, G.L., Colombano, S.P., Lohn, J.D., Stassinopoulos, D.: Coevolution for problem simplification. In: Proceedings of the Genetic and Evolutionary Computation Conference (1999)Google Scholar
  10. 10.
    Hedrick, T.L., Tobalske, B.W., Biewener, A.A.: Estimates of circulation and gait change based on a three-dimensional kinematic analysis of flight in cockatiels (nymphicus hollandicus) and ringed turtle doves (streptopelia risoria). Journal of Experimental Biology 205, 1389–1409 (2002)Google Scholar
  11. 11.
    Keinan, A., Sandbank, B., Hilgetag, C.C., Meilijson, I., Ruppin, E.: Fair attribution of functional contribution in artificial and biological networks. Neural Computuation 16(9), 1887–1915 (2004)MATHCrossRefGoogle Scholar
  12. 12.
    Kodjabachian, J., Meyer, J.-A.: Evolution and development of neural networks controlling locomotion, gradient-following, and obstacle-avoidance in artificial insects. IEEE Transactions on Neural Networks 9, 796–812 (1997)CrossRefGoogle Scholar
  13. 13.
    Matsuoka, K.: Mechanisms of frequency and pattern control in the neural rhythm generators. Biological Cybernetics 56, 345–353 (1987)CrossRefGoogle Scholar
  14. 14.
    McLean, D.: Automatic Flight Control Systems. Prentice Hall, New York (1990)MATHGoogle Scholar
  15. 15.
    Mouret, J.-B., Doncieux, S., Druot, T., Meyer, J.-A.: Evolution of closed-loop neuro-controllers for flapping-wing animats (submitted for publication, 2006)Google Scholar
  16. 16.
    Norberg, U.M.: Vertebrate Flight. Springer, Heidelberg (1990)Google Scholar
  17. 17.
    Shim, Y.S., Kim, S.J., Kim, C.H.: Evolving flying creatures with path following behaviors. In: The 9th International Conference on the Simulation and Synthesis of Living Systems (ALIFE IX), pp. 125–132 (2004)Google Scholar
  18. 18.
    Thomas, A.L.R.: On the tails of birds. BioScience 47(4), 215–225 (1997)CrossRefGoogle Scholar
  19. 19.
    Urzelai, J., Floreano, D., Dorigo, M., Colombetti, M.: Incremental robot shaping. Connection Science Journal 10(384), 341–360 (1998)CrossRefGoogle Scholar
  20. 20.
    Warrick, D.R., Bundle, M.W., Dial, K.P.: Bird maneuvering flight: Blurred bodies, clear heads1. Integ. And Comp. Biol. (2002)Google Scholar
  21. 21.
    Warrick, D.R., Dial, K.P.: Kinematic, aerodynamic and anatomical mechanisms in the slow, maneuvering flight of pigeons. The Journal of Experimental Biology, 201 655\(\breve{2}\)013672 (1998)Google Scholar
  22. 22.
    Wu, J., Popovic̀, Z.: Realistic modeling of bird flight animations. ACM Trans. Graph. 22(3), 888–895 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jean-Baptiste Mouret
    • 1
  • Stéphane Doncieux
    • 1
  • Jean-Arcady Meyer
    • 1
  1. 1.AnimatLab/LIP6, Paris, F-75015 France;CNRS, UMR7606Université Pierre et Marie Curie-Paris 6, UMR7606ParisFrance

Personalised recommendations