Visual Control of Flight Speed and Height in the Honeybee

  • Emily Baird
  • Mandyam V. Srinivasan
  • Shaowu Zhang
  • Richard Lamont
  • Ann Cowling
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


The properties of visually guided flight speed and height control were investigated by training honeybees (Apis mellifera L.) to fly through a tunnel in which the visual cues in the lateral and ventral visual fields could be varied by changing the patterns on the walls and floor of the tunnel. The results show that honeybees regulate their flight speed by keeping the velocity of the image of the environment in their eye constant. The results also show that honeybees use visual information from the ground to control their height above the ground. The findings of this study reveal that the mechanisms of flight speed and height control in the honeybee are perfectly adapted for extracting information from a complex visual environment using simple sensors and computations. Consequently, the techniques of visual guidance that are reported here suggest insect-inspired strategies for the control of aircraft flight.


Optic Flow Image Motion Flight Speed Image Velocity Ventral Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gibson, J.J.: The Perception of the Visual World. Houghton Mifflin, Boston (1950)Google Scholar
  2. 2.
    Srinivasan, M., Zhang, S., Lehrer, M., Collett, T.: Honeybee navigation en route to the goal: visual flight control and odometry. J. Exp. Biol. 199, 237–244 (1996)Google Scholar
  3. 3.
    Srinivasan, M.V., Zhang, S.W., Chahl, J.S., Barth, E., Venkatesh, S.: How honeybees make grazing landings on flat surfaces. Biol. Cybern. 83, 171–183 (2000)CrossRefGoogle Scholar
  4. 4.
    Heran, H.: Versuche ilber die Windkompensation der Bienen. Naturwissenscaften 42, 132–133 (1955)CrossRefGoogle Scholar
  5. 5.
    David, C.T.: Compensation for height in the control of groundspeed by Drosophila in a new ’Barber’s Pole’ wind tunnel. J. Comp. Physiol. A 147, 485–493 (1982)CrossRefGoogle Scholar
  6. 6.
    Baird, E., Srinivasan, M.V., Zhang, S., Cowling, A.: Visual control of flight speed in honeybees. J. Exp. Biol. 208, 3895–3905 (2005)CrossRefGoogle Scholar
  7. 7.
    McCulloch, C.E., Searle, S.: Generalized, linear, and mixed models. John Wiley & Sons, New York (2001)MATHGoogle Scholar
  8. 8.
    Kuenen, L.P.S., Baker, T.C.: Optomotor regulation of ground velocity in moths during flight to sex pheromone at different heights. Physiol. Entomol. 7, 193–202 (1982)CrossRefGoogle Scholar
  9. 9.
    Fadamiro, H.Y., Wyatt, T.D., Birch, M.C.: Flying beetles respond as moths predict: Optomotor anemotaxis to pheromone plumes at different heights. J. Insect Behav. 11, 549–557 (1998)CrossRefGoogle Scholar
  10. 10.
    Barron, A., Srinivasan, M.V.: Visual regulation of ground speed and headwind compensation in freely flying honey bees (Apis mellifera L). J. Exp. Biol. 209, 978–984 (2006)CrossRefGoogle Scholar
  11. 11.
    Srinivasan, M.V., Lehrer, M., Kirchner, W.H., Zhang, S.W.: Range perception through apparent image speed in freely flying honeybees. Vis. Neurosci. 6, 519–535 (1991)CrossRefGoogle Scholar
  12. 12.
    Si, A., Srinivasan, M.V., Zhang, S.: Honeybee navigation: properties of the visually driven ’odometer’. J. Exp. Biol. 206, 1265–1273 (2003)CrossRefGoogle Scholar
  13. 13.
    Reichardt, W.: Movement perception in insects. In: Reichardt, W. (ed.) Processing of Optical Data by Organisms and Machines, pp. 465–493. Academic Press, New York (1969)Google Scholar
  14. 14.
    Hausen, K.: Decoding of retinal image flow in insects. Rev. Oculomot. Res. 5, 203–235 (1993)Google Scholar
  15. 15.
    Ibbotson, M.R.: Evidence for velocity-tuned motion-sensitive descending neurons in the honeybee. Proc. R. Soc. Lond. 268, 2195–2201 (2001)CrossRefGoogle Scholar
  16. 16.
    Riley, J.R., Osborne, J.L.: Flight trajectories of foraging insects: observations using harmonic radar. In: Reynolds, D.R., Thomas, C., Wolwod, I.H. (eds.) Insect movement: mechanisms and consequences, Proceedings of the Royal Entomological Society’s 20th Symposium, pp. 129–157. CABI Publishing (2001)Google Scholar
  17. 17.
    Ruffier, F., Franceschini, N.: Optic flow regulation: the key to aircraft automatic guidance. Robotics and Autonomous Systems 50, 177 (2005)CrossRefGoogle Scholar
  18. 18.
    Peterson, A.I.: Launched to return, Unmanned Vehicles, 13 (2003)Google Scholar
  19. 19.
    Shakerina, O., Ma, Y., Koo, T.J., Hespanha, J., Shastry, S.S.: Vision guided landing of an unmanned air vehicle. In: Proceedings of the 38th Conference on Decision and Control, Phoenix, Arizona, pp. 4143–4148 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Emily Baird
    • 1
  • Mandyam V. Srinivasan
    • 1
  • Shaowu Zhang
    • 1
  • Richard Lamont
    • 1
  • Ann Cowling
    • 1
  1. 1.ARC Centre for Excellence in Vision Science, Research School of Biological SciencesAustralian National UniversityCanberra

Personalised recommendations