Why Are Evolved Developing Organisms Also Fault-Tolerant?

  • Diego Federici
  • Tom Ziemke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


It has been suggested that evolving developmental programs instead of direct genotype-phenotype mappings may increase the scalability of Genetic Algorithms. Many of these Artificial Embryogeny (AE) models have been proposed and their evolutionary properties are being investigated. One of these properties concerns the fault-tolerance of at least a particular class of AE, which models the development of artificial multicellular organisms. It has been shown that such AE evolves designs capable of recovering phenotypic faults during development, even if fault-tolerance is not selected for during evolution. This type of adaptivity is clearly very interesting both for theoretical reasons and possible robotic applications.

In this paper we provide empirical evidence collected from a multicellular AE model showing a subtle relationship between evolution and development. These results explain why developmental fault-tolerance necessarily emerges during evolution.


Phenotype Space Mutational Robustness Genotype Space Growth Program Multicellular Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Waddington, C.: Canalization of development and the inheritance of acquired characters. Nature 150, 563–565 (1942)CrossRefGoogle Scholar
  2. 2.
    Stearns, S.: Progress on canalization. Proc. Natl. Acad. Sci. USA, 10229–10230 (2002)Google Scholar
  3. 3.
    Schmalhausen, I.: Factors of Evolution: The Theory of Stabilizing Selection. Univ. of Chicago Press, Chicago (1949) (Reprinted in 1986)Google Scholar
  4. 4.
    Siegal, M., Bergman, A.: Waddington’s canalization revisited: developmental stability and evolution. Proc. Natl. Acad. Sci. USA 99(16), 10528–10532 (2002)CrossRefGoogle Scholar
  5. 5.
    Bode, P., Bode, H.: Formation of pattern in regenerating tissue pieces of hydra attenuata. i. head-body proportion regulation. Dev. Biol. 78(2), 484–496 (1990)CrossRefGoogle Scholar
  6. 6.
    Zhao, M., Momma, S., Delfani, K., Calren, M., Cassidy, R., Johansson, C.B., Brismar, H., Shupliankov, O., Frisen, J., Janson, A.: Evidence for neurogenesis in the adult mammalian substantia nigra. Proc. Natl. Acad. Sci. USA 100(13), 7925–7930 (2003)CrossRefGoogle Scholar
  7. 7.
    Wu, D., Schneiderman, T., Burgett, J., Gokhale, P., Barthel, L., Raymond, P.A.: Cones regenerate from retinal stem cells sequestered in the inner nuclear layer of adult goldfish retina. Invest Ophthalmol. Vis. Sci. 42(9), 2115–2124 (2001)Google Scholar
  8. 8.
    Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryogenies for an evolutionary design problem. In: Banzhaf, W., et al. (eds.) Proc. of GECCO 1999, pp. 35–43 (1999)Google Scholar
  9. 9.
    Miller, J.F.: Evolving Developmental Programs for Adaptation, Morphogenesis, and Self-Repair. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 256–265. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Federici, D., Downing, K.: Evolution and development of a multi-cellular organism: Scalability, resilience and neutral complexification. Artificial Life Journal 12(3) (in press, 2006)Google Scholar
  11. 11.
    Miller, J.F.: Evolving a Self-Repairing, Self-Regulating, French Flag Organism. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 129–139. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Federici, D.: The Evolutionary Emergence of Intrinsic Regeneration in Artificial Developing Organisms. In: Ijspeert, A.J., Masuzawa, T., Kusumoto, S. (eds.) BioADIT 2006. LNCS, vol. 3853, pp. 176–191. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Kindred, B.: Selection for an invariant character, vibrissa number in the house mouse. v. selection on non-tabby segregants from tabby selection lines. Genetics 55(2), 365–373 (1966)Google Scholar
  14. 14.
    Maynard-Smith, J., Sondhi, K.: The genetics of a pattern. Genetics 45(8), 1039–1050 (1960)Google Scholar
  15. 15.
    Federici, D.: A regenerating spiking neural network. Neural Networks 18(5-6), 746–754 (2005)CrossRefGoogle Scholar
  16. 16.
    Liu, H., Miller, J., Tyrrel, A.: Intrinsic evolvable hardware implementation of a robust biological development model for digital systems. In: Proc. of the 6th NASA Conference on Evolvable Hardware, pp. 87–92 (2005)Google Scholar
  17. 17.
    Wagner, A.: Robustness against mutations in genetic networks of yeast. Nature Genetics 24, 355–361 (2000)CrossRefGoogle Scholar
  18. 18.
    Stanley, K., Miikulainen, R.: A taxonomy for artificial embryogeny. Artificial Life 9(2), 93–130 (2003)CrossRefGoogle Scholar
  19. 19.
    Kitano, H.: Designing neural networks using genetic algorithms with graph generation system. Complex Systems 4(4), 461–476 (1990)MATHGoogle Scholar
  20. 20.
    Gruau, F.: Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm. PhD thesis, Ecole Normale Superieure de Lyon (1994)Google Scholar
  21. 21.
    Hornby, G., Pollack, J.: Body-brain co-evolution using L-systems as a generative encoding. In: Spector, L., et al. (eds.) Proc. of the Genetic and Evolutionary Computation Conference, GECCO 2001, pp. 868–875. Morgan Kaufmann, San Francisco (2001)Google Scholar
  22. 22.
    Hornby, G., Pollack, J.: The advantages of generative grammatical encodings for physical design. In: Proc. of the 2001 Congress on Evolutionary Computation, CEC 2001, pp. 600–607. IEEE Press, Los Alamitos (2001)CrossRefGoogle Scholar
  23. 23.
    Bongard, J.: Evolving modular genetic regulatory networks. In: Proc. of the 2002 Congress on Evolutionary Computation (CEC 2002), pp. 1872–1877. IEEE Press, Piscataway (2002)CrossRefGoogle Scholar
  24. 24.
    Dellaert, F., Beer, R.: Toward an evolvable model of development for autonomous agent synthesis. In: Brooks, R., Maes, P. (eds.) Proc. of Artificial Life IV, pp. 246–257. MIT Press, Cambridge (1994)Google Scholar
  25. 25.
    Eggenbergen-Hotz, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Husbands, P., Harvey, I. (eds.) Proc. of the 4th European Conference on Artificial Life (ECAL 1997), pp. 205–213 (1997)Google Scholar
  26. 26.
    Cangelosi, A., Nolfi, S., Parisi, D.: Cell division and migration in a ’genotype’ for neural networks. Network: Computation in Neural Systems 5, 497–515 (1994)MATHCrossRefGoogle Scholar
  27. 27.
    Ohno, S.: Evolution by Gene Duplication. Springer, Heidelberg (1970)Google Scholar
  28. 28.
    Nowak, M.: What is a quasi-species? Trends Ecol. Evol. 7, 118–121 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Diego Federici
    • 1
  • Tom Ziemke
    • 1
  1. 1.University of SkövdeSkövdeSweden

Personalised recommendations