Modelling Multi-modal Learning in a Hawkmoth

  • Anna Balkenius
  • Almut Kelber
  • Christian Balkenius
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)

Abstract

The moth Macroglossum stellatarum can learn the colour and sometimes the odour of a rewarding food source. We present data from 20 different experiments with different combinations of blue and yellow artificial flowers and the two odours honeysuckle and lavender. The experiments show that learning about the odours depends on the colour used. By training on different colour-odour combinations and testing on others, it becomes possible to investigate the exact relation between the two modalities during learning. Three computational models were tested in the same experimental situations as the real moths and their predictions were compared to the experimental data. The average error over all experiments as well as the largest deviation from the experimental data were calculated. Neither the Rescorla-Wagner model or a learning model with independent learning for each stimulus component were able to explain the experimental data. We present the new categorisation model, which assumes that the moth learns a template for the sensory attributes of the rewarding stimulus. This model produces behaviour that closely matches that of the real moth in all 20 experiments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andersson, S.: Foraging responses in the butterflies Inachis io, Aglais urticae (nymphalidae), and Gonepteryx rhamni (pieridae) to floral scents. J. Chem. Ecol. 13, 1–11 (2003)Google Scholar
  2. 2.
    Balkenius, A., Kelber, A.: Colour constancy in diurnal and nocturnal hawkmoths. J. Exp. Biol. 207, 3307–3316 (2004)CrossRefGoogle Scholar
  3. 3.
    Balkenius, A., Kelber, A.: Colour preferences influence odour learning in the hawkmoth, Macroglossum stellatarum. Naturwissenschaften, 1–4 (2006)Google Scholar
  4. 4.
    Balkenius, A., Kelber, A., Balkenius, C.: A model of selection between stimulus and place strategy in a hawkmoth. Adaptive Behavior 12(1), 21–35 (2004)CrossRefGoogle Scholar
  5. 5.
    Balkenius, A., Rosén, W., Kelber, A.: The relative importance of olfaction and vision in a diurnal and a nocturnal hawkmoth. Journal of Comparative Physiology A: Sensory, Neural, and Behavioral Physiology 192(4), 431–437 (2006)CrossRefGoogle Scholar
  6. 6.
    Brantjes, N.B.M.: Sensory responses to flowers in night-flying moths. In: Richards, A.J. (ed.) The pollinaton of flowers by insects, pp. 13–19. The Dorset Press, Dorchester (1978)Google Scholar
  7. 7.
    Couvillon, P.A., Arakaki, L., Bitterman, M.E.: Intramodal blocking in honeybees. Anim. Learn. Behav. 25, 277–282 (1997)CrossRefGoogle Scholar
  8. 8.
    Couvillon, P.A., Campos, A.C., Bass, T.D., Bitterman, M.E.: Intermodal blocking in honeybees. Exp. Psychol. Soc. 54B, 369–381 (2001)Google Scholar
  9. 9.
    Couvillon, P.A., Mateo, E.T., Bitterman, M.E.: Reward and learning in honeybees: Analysis of an overshadowing effect. Anim. Learn. Behav. 24, 19–27 (1996)CrossRefGoogle Scholar
  10. 10.
    Cunningham, J.P., Moore, C.J., Zalucki, M.P., West, S.A.: Learning, odour preference and flower foraging in moths. J. Exp. Biol. 207, 87–94 (2004)CrossRefGoogle Scholar
  11. 11.
    Funayama, E.S., Couvillon, P.A., Bitterman, M.E.: Compound conditioning in honeybees: Blocking tests of the independence assumption. Anim. Learn. Behav. 23, 429–437 (1995)CrossRefGoogle Scholar
  12. 12.
    Gallistel, R.C.: The organization of learning. MIT Press, Cambridge (1990)Google Scholar
  13. 13.
    Gerber, B., Ullrich, J.: No evidence for olfactory blocking in honeybee classical conditioning. J. Exp. Biol. 202, 1839–1854 (1999)Google Scholar
  14. 14.
    Giurfa, M., Núñez, J., Backhaus, W.: Odour and colour information in the foraging choice behaviour of the honeybee. J. Comp. Physiol. A. 175, 773–779 (1994)CrossRefGoogle Scholar
  15. 15.
    Giurfa, M., Núñez, J., Chittka, L., Menzel, R.: Colour preferences of flower-naive honeybees. J. Comp. Physiol. A. 177, 247–259 (1995)CrossRefGoogle Scholar
  16. 16.
    Herrera, C.M.: Activity pattern and thermal biology of a day-flying hawkmoth (Macroglossum stellatarum) under mediterranean summer conditions. Ecol. Entomol. 17, 52–56 (1992)CrossRefGoogle Scholar
  17. 17.
    Kamin, L.J.: Predictability, surprise, attention and conditioning. In: Campbell, B.A., Church, R.M. (eds.) Punishment and Aversive Behavior, pp. 279–296. Appleton-Century-Crofts, New York (1969)Google Scholar
  18. 18.
    Kelber, A.: Innate preferences for flower features in the hawkmoth Macroglossum stellatarum. J. Exp. Biol. 200, 826–835 (1997)Google Scholar
  19. 19.
    Kelber, A., Hénique, U.: Trichromatic colour vision in the hummingbird hawkmoth, Macroglossum stellatarum. J. Comp. Physiol. A. 184, 535–541 (1999)CrossRefGoogle Scholar
  20. 20.
    Kelber, A., Vorobyev, M., Osorio, D.: Animal colour vision - behavioural tests and physiological concepts. Biol. Rev. 78, 81–118 (2003)CrossRefGoogle Scholar
  21. 21.
    Kunze, J., Gumbert, A.: The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav. Ecol. 12, 447–456 (2001)CrossRefGoogle Scholar
  22. 22.
    Luo, R.C., Kay, M.G.: Data fusion and sensor integration: state-of-the-art 1990s. In: Abidi, M.A., Gonzalez, R.C. (eds.) Data Fusion in Robotics and Machine Intelligence. Academic Press, Boston (1992)Google Scholar
  23. 23.
    Mackintosh, N.J.: The Physiology of Animal Learning. Academic Press, London (1974)Google Scholar
  24. 24.
    Menzel, R.: Untersuchungen zum erlernen von spektralfarben durch die honigbiene (Apis mellifica). Z. t vergl. Physiol. 56, 25–37 (1967)Google Scholar
  25. 25.
    Pavlov, I.P.: Conditioned Reflexes. Oxford University Press, Oxford (1927)Google Scholar
  26. 26.
    Pelz, C., Gerber, B., Menzel, R.: Odorant intensity as a determinant for olfactory conditioning in honeybees: roles in discrimination, overshadowing and memory consolidation. J. Exp. Biol. 200, 837–847 (1997)Google Scholar
  27. 27.
    Pfaff, M., Kelber, A.: Ein vielseitiger Futterspender für anthophile Insekten. Entomol. Zt. 113, 360–361 (2003)Google Scholar
  28. 28.
    Raguso, R.A., Willis, M.A.: Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim. Behav. 64, 685–695 (2002)CrossRefGoogle Scholar
  29. 29.
    Rowe, C.: Receiver psychology and the evolution of multicomponent signals. Anim. Behav. 58, 921–931 (1999)CrossRefGoogle Scholar
  30. 30.
    Srinivasan, M.V., Zhang, S.W., Zhu, H.: Honeybees links sight to smell. Nature 396, 637–638 (1998)CrossRefGoogle Scholar
  31. 31.
    von Frisch, K.: Der Farbensinn und Formensinn der Biene. Zool. Jb. Abt. Zool. Physiol. 15, 193–260 (1914)Google Scholar
  32. 32.
    von Frisch, K.: Über den Geruchssinn der Bienen und seine blütenbiologische Bedeutung. Zool. Jb. Abt. Zool. Physiol. 37, 2–238 (1919)Google Scholar
  33. 33.
    Weiss, M.: Innate colour preferences and flexible colour learning in the pipevine swallowtail. Anim. Behav. 53, 1043–1052 (1997)CrossRefGoogle Scholar
  34. 34.
    Weiss, M.: Vision and learning in some neglected pollinators: beetles, flies, moths, and butterflies. In: Chittka, L., Thomson, J.D. (eds.) Cognitive Ecology of Pollination, pp. 171–190. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  35. 35.
    Zentall, T.R., Riley, D.A.: Selective attention in animal discrimination learning. J. gen. Psychol. 127, 45–66 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anna Balkenius
    • 1
    • 2
  • Almut Kelber
    • 2
  • Christian Balkenius
    • 3
  1. 1.Chemical EcologySLU AlnarpAlnarpSweden
  2. 2.Vision Group, Department of Cell and Organism BiologyLund UniversityLundSweden
  3. 3.Lund University Cognitive ScienceLundSweden

Personalised recommendations