Transition Cells for Navigation and Planning in an Unknown Environment

  • N. Cuperlier
  • M. Quoy
  • C. Giovannangeli
  • P. Gaussier
  • P. Laroque
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


We present a navigation and planning system using vision for extracting non predefined landmarks, a dead-reckoning system generating the integrated movement and a topological map. Localisation and planning remain possible even if the map is partially unknown. An omnidirectional camera gives a panoramic images from which unpredefined landmarks are extracted. The set of landmarks and their azimuths relative to a fixed orientation defines a particular location without any need of an external environment map. Transitions between two locations recognized at time t and t-1 are explicitly coded, and define spatio-temporal transitions. These transitions are the sensory-motor unit chosen to support planning. During exploration, a topological map (our cognitive map) is learned on-line from these transitions without any cartesian coordinates nor occupancy grids. The edges of this map may be modified in order to take into account dynamical changes of the environment. The transitions are linked with the integrated movement used for moving from one place to the others. When planning is required, the activities of transitions coding for the required goal in the cognitive map are enough to bias predicted transitions and to obtain the required movement.


Mobile Robot Entorhinal Cortex Place Cell Transition Cell Panoramic Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)CrossRefGoogle Scholar
  2. 2.
    Hafner, V.V.: Cognitive maps in rats and robots. Adaptive Behavior 13, 87–96 (2005)CrossRefGoogle Scholar
  3. 3.
    Arleo, A., Gerstner, W.: Spatial cognition and neuro-mimetic navigation: A model of hippocampal place cell activity. Biol. Cybern. 83, 287–299 (2000)CrossRefGoogle Scholar
  4. 4.
    Filliat, D., Meyer, J.A.: Map-based navigation in mobile robots - I. a review of localisation strategies. Journal of Cognitive Systems Research 4, 243–282 (2003)CrossRefGoogle Scholar
  5. 5.
    Meyer, J.A., Filliat, D.: Map-based navigation in mobile robots - II a review of map-learning and path-planing strategies. Journal of Cognitive Systems Research 4, 283–317 (2003)CrossRefGoogle Scholar
  6. 6.
    Meyer, J.A., Wilson, S.W.: From animals to animats: First International Conference on Simulation of Adaptive Behavior. MIT Press, Cambridge (1991)Google Scholar
  7. 7.
    Gaussier, P., Leprêtre, S., Quoy, M., Revel, A., Joulain, C., Banquet, J.: Experiments and models about cognitive map learning for motivated navigation. In: Interdisciplinary approaches to robot learning. Robotics and Intelligent Systems Series, vol. 24, pp. 53–94. World Scientific, Singapore (2000)CrossRefGoogle Scholar
  8. 8.
    Schwartz, L.: Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res. 20, 645–669 (1980)CrossRefGoogle Scholar
  9. 9.
    Joulain, C., Gaussier, P., Revel, A.: Learning to build categories from perception-action associations. In: International Conference on Intelligent Robots and Systems - IROS 1997, IEEE/RSJ, Grenoble, France, pp. 857–864. (1997)Google Scholar
  10. 10.
    Tinbergen, N.: The study of instinct. Oxford University Press, London (1951)Google Scholar
  11. 11.
    O’Keefe, J., Nadel, N.: The hyppocampus as a cognitive map. Clarenton Press, Oxford (1978)Google Scholar
  12. 12.
    Giovannangeli, C., Gaussier, P., Banquet, J.P.: Robot as a tool to study the robustness of visual place cells. In: I3M 2005: International Conference on Conceptual Modeling and Simulation (CMS 2005), Marseille, pp. 97–104 (2005)Google Scholar
  13. 13.
    Banquet, J., Gaussier, P., Dreher, J., Joulain, C., Revel, A.: Space-Time, Order and Hierarchy in Fronto-Hippocampal System: A Neural Basis of Personality. In: Cognitive Science Perpectives on Personality and Emotion, vol. 124. Elsevier Science BV, Amsterdam (1997)Google Scholar
  14. 14.
    Tolman, E.: Cognitive maps in rats and men. The Psychological Review 55 (1948)Google Scholar
  15. 15.
    Arbib, M., Lieblich, I.: Motivational learning of spatial behavior. In: Metzler, J. (ed.) Systems Neuroscience, pp. 221–239. Academic Press, London (1977)Google Scholar
  16. 16.
    Schmajuk, N., Blair, H.: Place learning and the dynamics of spatial navigation: a neural network approach. Adaptive Behavior 1, 353–385 (1992)CrossRefGoogle Scholar
  17. 17.
    Franz, M.O., Schölkopf, B., Mallot, H.A., Bülthoff, H.H.: Learning view graphs for robot navigation. Autonomous Robots 5, 111–125 (1998)CrossRefGoogle Scholar
  18. 18.
    Bachelder, I.A., Waxman, A.M.: Mobile robot visual mapping and localization: A view-based neurocomputationnal architecture that emulates hippocampal place learning. Neural Networks 7, 1083–1099 (1994)CrossRefGoogle Scholar
  19. 19.
    Trullier, O., Wiener, S.I., Berthoz, A., Meyer, J.A.: Biologically based artificial navigation systems: review and prospects. Progress in Neurobiology 51, 483–544 (1997)CrossRefGoogle Scholar
  20. 20.
    Schölkopf, B., Mallot, H.A.: View-based cognitive mapping and path-finding. Adaptive Behavior 3, 311–348 (1995)CrossRefGoogle Scholar
  21. 21.
    Bugmann, G., Taylor, J., Denham, M.: Route finding by neural nets. In: Taylor, J. (ed.) Neural Networks, Henley-on-Thames, pp. 217–230. Alfred Waller Ltd. (1995)Google Scholar
  22. 22.
    Donnart, J., Meyer, J.: Learning reactive and planning rules in a motivationnally autonomous animat. IEEE Transactions on Systems, Man and Cybernetics-Part B 26, 381–395 (1996)CrossRefGoogle Scholar
  23. 23.
    Hok, V., Save, E., Lenck-Santini, P.P., Poucet, B.: Coding for spatial goals in prelimbic-infralimbic area of the rat frontal cortex. Proceedings of the National Academy of Sciences (to appear, 2005)Google Scholar
  24. 24.
    Bellman, R.E.: On a routing problem. Quaterly of Applied Mathematics 16, 87–90 (1958)MATHGoogle Scholar
  25. 25.
    Revel, A., Gaussier, P., Leprêtre, S., Banquet, J.: Planification versus sensory-motor conditioning: what are the issues? In: From Animals to Animats: Simulation of Adaptive Behavior SAB 1998, pp. 129–138 (1998)Google Scholar
  26. 26.
    Banquet, J., Gaussier, P., Quoy, M., Revel, A., Burnod, Y.: A hierarchy of associations in hippocampo-cortical systems: cognitive maps and navigation strategies. Neural Computation 17 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • N. Cuperlier
    • 1
  • M. Quoy
    • 1
  • C. Giovannangeli
    • 1
  • P. Gaussier
    • 1
  • P. Laroque
    • 1
  1. 1.ETIS-UMR 8051Universite de Cergy-Pontoise – ENSEACergy-PontoiseFrance

Personalised recommendations