Navigation in Large-Scale Environments Using an Augmented Model of Visual Homing

  • Lincoln Smith
  • Andrew Philippides
  • Phil Husbands
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4095)


Several models have been proposed for visual homing in insects. These work well in small-scale environments but performance usually degrades significantly when the scale of the environment is increased. We address this problem by extending one such algorithm, the average landmark vector (ALV) model, by using a novel approach to waypoint selection during the construction of multi-leg routes for visual homing. The algorithm, guided by observations of insect behaviour, identifies locations on the boundaries between visual locales and uses them as waypoints. Using this approach, a simulated agent is shown to be capable of significantly better autonomous exploration and navigation through large-scale environments than the standard ALV homing algorithm.


Movement Vector Goal Location Visual Locale Visual Landmark Global Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vardy, A., Moller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17(1-2), 47–89 (2005)CrossRefGoogle Scholar
  2. 2.
    Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)CrossRefGoogle Scholar
  3. 3.
    Lambrinos, D., Möller, R., Pfeifer, R., Wehner, R., Labhart, T.: A mobile robot employing insect strategies for navigation. Robotics and Autonomous Systems 30, 39–64 (2000)CrossRefGoogle Scholar
  4. 4.
    Collett, T.S., Dillmann, E., Giger, A., Wehner, R.: Visual landmarks and route following in desert ants. Journal of Comparative Physiology A. 170, 435–442 (1992)CrossRefGoogle Scholar
  5. 5.
    Collett, M., Collett, T.S.: How do insects use path integration for their navigation? Biological Cypernetics 83, 245–259 (2000)CrossRefGoogle Scholar
  6. 6.
    Wehner, R., Räber, F.: Visual spatial memory in desert ants. Cataglyphis bicolor (hymenoptera: Formicidae). Experientia 35, 1569–1571 (1979)CrossRefGoogle Scholar
  7. 7.
    Nicholson, D.J., Judd, S.P.D., Cartwright, B.A., Collett, T.S.: Learning walks and landmark guidance in wood ants (Formica rufa). Journal of Experimental Biology 202, 1831–1838 (1999)Google Scholar
  8. 8.
    Mittelstaedt, H.: The role of multimodal convergence in homing by path integration. Fortschritte der Zoologie 28, 197–212 (1983)Google Scholar
  9. 9.
    Cartwright, B., Collett, T.S.: Landmark learning in bees. Journal of Comparative Physiology A. 151, 521–543 (1983)CrossRefGoogle Scholar
  10. 10.
    Wehner, R., Michel, B., Antonsen, P.: Visual navigation in insects: Coupling of egocentric and geocentric information. Journal of Experimental Biology 199, 129–140 (1996)Google Scholar
  11. 11.
    Wehner, R.: The polarization-vision project: Championing organismic biology. In: Schildberger, K., Elsner, N. (eds.) Neural Basis of Behavioural Adaptation, vol. 30, pp. 103–143. Gustav Fischer Verlag, Stuttgart (1994)Google Scholar
  12. 12.
    Lambrinos, D., Möller, R., Pfeifer, R., Wehner, R.: Landmark navigation without snapshots: the average landmark vector model. In: Elsner, N., Wehner, R. (eds.) 26th Goettingen Neurobiology Conference, vol. 1, p. 221 (1998)Google Scholar
  13. 13.
    Möller, R., Lambrinos, D., Roggendorf, T., Pfeifer, R., Wehner, R.: Insect strategies of visual homing in mobile robots. Technical Report IFI-AI-99.06, University of Zurich, Artificial Intelligence Laboratory, Department of Computer Science (1999)Google Scholar
  14. 14.
    Collett, M., Collett, T.S., Bisch, S., Wehner, R.: Local and global vectors in desert ant navigation. Nature 394, 269–272 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lincoln Smith
    • 1
  • Andrew Philippides
    • 1
  • Phil Husbands
    • 1
  1. 1.Centre for Computational Neuroscience and RoboticsUniversity of SussexUnited Kingdom

Personalised recommendations