Skip to main content

POTBUG: A Mind’s Eye Approach to Providing BUG-Like Guarantees for Adaptive Obstacle Navigation Using Dynamic Potential Fields

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Abstract

The problem we address is adaptive obstacle navigation for autonomous robotic agents in an unknown or dynamically changing environment with a 2-D travel surface without the use of a global map. Two well known but hitherto apparently antithetical approaches to the problem, potential fields and BUG algorithms, are synthesised here. The best of both approaches is attempted by combining a Mind’s Eye with dynamic potential fields and BUG-like travel modes. The resulting approach, using only sensed goal directions and obstacle distances relative to the robot, is compatible with a wide variety of robots and provides robust BUG-like guarantees for successful navigation of obstacles. Simulation experiments are reported for both near-sighted (POTBUG) and far-sighted (POTSMOOTH) robots. The results are shown to support the theoretical design’s intentions that the guarantees persist in the face of significant sensor perturbation and that they may also be attained with smoother paths than existing BUG paths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Russell, S.J., Norvig, P.: Artificial Intelligence, a Modern Approach. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  2. Bell, G., Weir, M.: Forward chaining for robot and agent navigation using potential fields. In: Twenty-seventh Australasian Computer Science Conference (ACSC 2004), vol. 26 (2004)

    Google Scholar 

  3. Lumelsky, V., Stepanov, A.: Path planning strategies for a point mobile automaton moving amidst unknown obstacles of arbitrary shape. Algorithmica 2(4), 403–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lumelsky, V., Mukhopadhyay, S., Sun, K.: Dynamic path planning in sensor-based terrain acquisition. IEEE Trans. Robotics and Automation 6(4), 462–472 (1990)

    Article  Google Scholar 

  5. Rao, N.S.V., Kareti, S., Shi, W., Iyenagar, S.S.: Robot Navigation in Unknown Terrains: Introductory Survey of Non-Heuristic Algorithms. Oak Ridge National Laboratory Technical Report, ORNL/TM-12410, 1–58 (July 1993)

    Google Scholar 

  6. Latombe, J.: Robot Motion Planning. Kluwer Academic Publishers, Dordrecht (1991)

    Google Scholar 

  7. Dudek, G., Jenkin, M.: Computational Principles of Mobile Robotics. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  8. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The International Journal of Robotics Research 5(1) (1986)

    Google Scholar 

  9. Arkin, R.: Behavior-based robotics. MIT Press, Cambridge (1998)

    Google Scholar 

  10. Koren, Y., Borenstein, J.: Potential field methods and their inherent limitation for mobile robot navigation. In: IEEE Conference on Robotics and Automation, pp. 1398–1404 (1991)

    Google Scholar 

  11. Lumelsky, V.J., Skewis, T.: Incorporating range sensing in the robot navigation function. IEEE Transactions on Systems, Man, and Cybernetics 20(5), 1058–1068 (1990)

    Article  Google Scholar 

  12. Kamon, I., Rivlin, E.: Sensory-based motion planning with global proofs. IEEE Transactions on Robotics and Automation 13(6) (1997)

    Google Scholar 

  13. Kamon, I., Rivlin, E.: Range-sensor-based navigation in three-dimensional polyhedral environments. The International Journal of Robotics Research 20(1) (2001)

    Google Scholar 

  14. Koditschek, D.: Exact robot navigation by means of potential functions: Some topological consideration. In: IEEE Conference on Robotics and Automation, pp. 1–6 (1987)

    Google Scholar 

  15. Alvarez, D.: Online motion planning using Laplace potential fields. In: IEEE International Conference on Robotics and Automation, pp. 3347–3352 (2003)

    Google Scholar 

  16. Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions of the Royal Society B 337, 283–294 (1992)

    Article  Google Scholar 

  17. Huang, W.H., Fajen, B.R., Fink, J.R., Warren, W.H.: Visual navigation and obstacle avoidance using a steering potential function. Robotics and Autonomous Systems 54(4), 288–299 (2006)

    Article  Google Scholar 

  18. Gorse, D., et al.: The new era in supervised learning. Neural Networks 10(2), 343–352 (1987)

    Article  Google Scholar 

  19. Lewis, J., Weir, M.: Subgoal chaining and the local minimum problem. In: IEEE International Joint Conference on Neural Networks (1999)

    Google Scholar 

  20. Lewis, J., Weir, M.: Using subgoal chaining to address the local minimum problem. In: International ICSC Symposium on Neural Computation (2000)

    Google Scholar 

  21. Xi-yong, Z., Jing, Z.: Virtual local target method for avoiding local minimum in potential fields based navigation. Journal of Zhejiang University SCIENCE 4(3), 264–269 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weir, M., Buck, A., Lewis, J. (2006). POTBUG: A Mind’s Eye Approach to Providing BUG-Like Guarantees for Adaptive Obstacle Navigation Using Dynamic Potential Fields. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_20

Download citation

  • DOI: https://doi.org/10.1007/11840541_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics