Skip to main content

Adaptive Four Legged Locomotion Control Based on Nonlinear Dynamical Systems

  • Conference paper
From Animals to Animats 9 (SAB 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4095))

Included in the following conference series:

Abstract

Dynamical systems have been increasingly studied in the last decade for designing locomotion controllers. They offer several advantages over previous solutions like synchronization, smooth transitions under parameter variation, and robustness. In this paper, we present an adaptive locomotion controller for four-legged robots. The controller is composed of a set of coupled nonlinear dynamical systems. Using our controller the robot is capable of adapting its locomotion to the physical properties of the robot, in particular its resonant frequency. Our approach aims at developing an on-line learning system that attempts to minimize the energy necessary for the gait. We have implemented the model both in a simulated physical environment (Webots) and on a Sony Aibo robot. We present a series of experiments which demonstrate how the controller can tune its frequency to the resonant frequency of the robot, and modify it when the weight of the robot is changed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Movies and more technical details of the implementation are available online at: http://birg.epfl.ch/page57636.html

  2. Blickhan, R.: The spring-mass model for running and hopping. J. Biomechanics 22(11-12), 1217–1227 (1989)

    Article  Google Scholar 

  3. Buchli, J., Iida, F., Ijspeert, A.J.: Finding resonance: Adaptive frequency oscillators for dynamic legged locomotion (submitted)

    Google Scholar 

  4. Buchli, J., Ijspeert, A.J.: Distributed Central Pattern Generator Model for Robotics Application Based on Phase Sensitivity Analysis. In: Ijspeert, A.J., Murata, M., Wakamiya, N. (eds.) BioADIT 2004. LNCS, vol. 3141, pp. 333–349. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  5. Buchli, J., Ijspeert, A.J.: A simple, adaptive locomotion toy-system. In: Schaal, S., Ijspeert, A.J., Billard, A., Vijayakumar, S., Hallam, J., Meyer, J.A. (eds.) From Animals to Animats 8. Proceedings of the Eighth International Conference on the Simulation of Adaptive Behavior (SAB 2004), pp. 153–162. MIT Press, Cambridge (2004)

    Google Scholar 

  6. Buchli, J., Righetti, L., Ijspeert, A.J.: A Dynamical Systems Approach to Learning: A Frequency-Adaptive Hopper Robot. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J. (eds.) ECAL 2005. LNCS (LNAI), vol. 3630, pp. 210–220. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Cohen, A.H., Boothe, D.L.: Sensorimotor interactions during locomotion: principles derived from biological systems. Autonomous Robots 7(3), 239–245 (1999)

    Article  Google Scholar 

  8. Fukuoka, Y., Kimura, H., Cohen, A.H.: Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts. The International Journal of Robotics Research 3-4, 187–202 (2003)

    Article  Google Scholar 

  9. Grillner, S.: Control of locomotion in bipeds, tetrapods and fish. In: Brooks, V.B. (ed.) Handbook of Physiology, The Nervous System, Motor Control, vol. 2, pp. 1179–1236. American Physiology Society, Bethesda (1981)

    Google Scholar 

  10. Honerkamp, J.: The heart as a system of coupled nonlinear oscillators. J. Math. Biol. 18(1), 69–88 (1983)

    Google Scholar 

  11. Hopf, E.: Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differentialsystems. In: Ber. Math.-Phys., Sächs. Akad. d. Wissenschaften, Leipzig, pp. 1–22 (1942)

    Google Scholar 

  12. McGeer, T.: Passive dynamic walking. International Journal of Robotics Research 9, 62–82 (1990)

    Article  Google Scholar 

  13. Michel, O.: Webots: Professional mobile robot simulation. International Journal of Advanced Robotic Systems 1(1), 39–42 (2004)

    Google Scholar 

  14. Smith, R., et al.: Open Dynamics Engine, Available online at: http://ode.org

  15. Righetti, L., Buchli, J., Ijspeert, A.J.: Dynamic hebbian learning in adaptive frequency oscillators. Physica D 216(2), 269–281 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Strogatz, S.: Nonlinear Dynamics and Chaos. With applications to Physics, Biology, Chemistry, and Engineering. Addison Wesley Publishing Company, Reading (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brambilla, G., Buchli, J., Ijspeert, A.J. (2006). Adaptive Four Legged Locomotion Control Based on Nonlinear Dynamical Systems. In: Nolfi, S., et al. From Animals to Animats 9. SAB 2006. Lecture Notes in Computer Science(), vol 4095. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11840541_12

Download citation

  • DOI: https://doi.org/10.1007/11840541_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-38608-7

  • Online ISBN: 978-3-540-38615-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics