Characterising Agents’ Behaviours: Selecting Goal Strategies Based on Attributes

  • José Cascalho
  • Luis Antunes
  • Milton Corrêa
  • Helder Coelho
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4149)


The growth in the demand of autonomous agent systems which take decisions on behalf of other agents or human users, increases the necessity to study systems which use affective elements to manage their resources and to take decisions in order to become more efficient and to facilitate human-machine interaction. In this paper we present an architecture that allows an agent to select a sequence of actions based on a previously predefined planning structure, by using a tree of goals and a set of informational beliefs. The affective elements which we call attributes, such as urgency, insistence and intensity, have the capacity to alter the agents’ behaviours, modifying their priorities with regard to resource consumption, the implicit costs of action execution and even their capabilities to execute an action. In a preliminary experiment made in a multi-agent system environment, a modified predator-prey workbench, we show how the attributes linked to these beliefs change the agents’ behaviour and improve their global performance.


Multiagent System Condition Belief Affective Element Urgency Level Goal Strategy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sloman, A.: Motive Mechanisms Emotions. In: Boden, M.A. (ed.) The Philososphy of Artificial Intelligence, pp. 231–247. Oxford University Press, Oxford (1990)Google Scholar
  2. 2.
    Sloman, A.: Varieties of affect and the cogaff architecture schema (2001)Google Scholar
  3. 3.
    Davis, D., Lewis, S.C.: Affect and affordance: Architectures without emotion (2004)Google Scholar
  4. 4.
    Cohn, A.C., Jennings, N.R.: Interaction, planning and motivation. In: Cognitive systems: Information processing meets brain science, pp. 163–188. Springer, Heidelberg (2005)Google Scholar
  5. 5.
    Cascalho, J., Nobrega, L., Correa, M., Coelho, H.: Exploring the mechanisms behind a bdi-like architecture. In: Conceptual Modeling Simulation Conference, pp. 153–158 (2005)Google Scholar
  6. 6.
    Cascalho, J., Antunes, L., Coelho, H.: Toward a Motivated BDI Agent Using Attributes Embedded in Mental States. In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 459–469. Springer, Heidelberg (2006)Google Scholar
  7. 7.
    Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J., Leite, J., O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and platforms for multi-agent systems. Informatica 30, 33–44 (2006)MATHGoogle Scholar
  8. 8.
    D’Inverno, M., Luck, M., Georgeff, M., Kinny, D., Wooldridge, M.: The dmars architecture: A specification of the distributed multi-agent reasoning system. Autonomous Agents and Multi-Agent Systems 8, 5–53 (2004)CrossRefGoogle Scholar
  9. 9.
    Castelfranchi, C.: Reasons: Belief support and goal dynamics. Mathware and SoftComputing, 233–247 (1996)Google Scholar
  10. 10.
    Castelfranchi, C., Conte, R.: Cognitive and Social Action. UCL Press (1995)Google Scholar
  11. 11.
    Susi, A., Perini, A., Mylopoulos, J.: The tropos metamodel and its use. Informatica 29, 401–408 (2005)Google Scholar
  12. 12.
    Kok, J., Vlassis, N.: The pursuit domain package. Technical report, Informatics Institute, University of Amsterdam, The Netherlands (2003)Google Scholar
  13. 13.
    Benda, M., Jagannathan, V., Dodhiawala, R.: On optimal cooperation of knowledge sources. Technical report, Boeing Artificial Intelligence Center, Boeing Computer Services (1985)Google Scholar
  14. 14.
    Haynes, T., Sen, S.: Evolving behavioral strategies in predators and prey. In: Sen, S. (ed.) IJCAI 1995 Workshop on Adaptation and Learning in Multiagent Systems, Montreal, Quebec, Canada, pp. 32–37. Morgan Kaufmann, San Francisco (1995)Google Scholar
  15. 15.
    Morgado, L., Gaspar, G.: Emotion based adaptive reasoning for resource bounded agents. In: AAMAS 2005: Proceedings of the fourth international joint conference on Autonomous agents and multiagent systems, pp. 921–928. ACM Press, New York (2005)Google Scholar
  16. 16.
    Dastani, M., van der Torre, L.: A classification of cognitive agents. In: Procs. of Cogsci 2002, Fairfax, VA (2002)Google Scholar
  17. 17.
    Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos: An agent-oriented software development methodology. Journal od Auronomous Agents and Multi-Agent Systems 8, 203–236 (2004)CrossRefGoogle Scholar
  18. 18.
    Nahl, D.: Measuring the affective information environment of web searchers. In: Proceedings of the 67th ASSIS&T Annual Meeting, vol. 41, pp. 191–197 (2004)Google Scholar
  19. 19.
    Corrêa, M., Coelho, H.: Collective mental states in an extended mental states framework. In: International Conference on Collective Intentionality IV, Certosa di Pontignano, pp. 13–15 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • José Cascalho
    • 1
  • Luis Antunes
    • 3
  • Milton Corrêa
    • 2
  • Helder Coelho
    • 3
  1. 1.Departamento de Ciências da EducaçãoUniversidade dos AçoresAngra do HeroismoPortugal
  2. 2.Coordenação da Ciência da Computação e Laboratório Nacional de Computação CientíficaPetrópolisBrasil
  3. 3.Departamento de InformáticaFaculdade de Ciências da Universidade de LisboaLisboaPortugal

Personalised recommendations