Evaluating Dynamic Services in Bioinformatics

  • Maíra R. Rodrigues
  • Michael Luck
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4149)


In dynamic applications characterised by a variety of alternative services with the same functionality but heterogeneous results, agents requesting services must find an efficient way to select a service provider from alternatives. In this context, this paper proposes an evaluation method to analyse the outcome of dynamic service, in order to provide a guide for agents in future decision-making over alternative interaction partners. We consider the application of the evaluation method to the bioinformatics domain and present empirical results that support the need for dynamic evaluation of services in that domain.


Utility Function Search Engine Service Result Dynamic Service Protein Match 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Campbell, A.M., Heyer, L.J.: Discovering Genomics, Proteomics, and Bioinformatics. Benjamin Cummings, San Francisco (2002)Google Scholar
  2. 2.
    Bryson, K., Luck, M., Joy, M., Jones, D.T.: Applying agents to bioinformatics in geneweaver. In: Klusch, M., Kerschberg, L. (eds.) CIA 2000. LNCS (LNAI), vol. 1860, pp. 60–71. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  3. 3.
    Decker, K., Zheng, X., Schmidt, C.: A multi-agent system for automated genetic annotation. In: Fifth International Conference on Autonomous Agents, Montreal, pp. 433–440 (2001)Google Scholar
  4. 4.
    Edwards, W., Newman, J.R.: Multiattribute evaluation. In: Sullivan, J.L., Niemi, R.G. (eds.) Quantitative Applications in the Social Sciences, vol. 26, pp. 7–94. Sage, Thousand Oaks (1982)Google Scholar
  5. 5.
    Russel, S., Norvig, P.: Intelligent Agents. In: Artificial Intelligence: A Modern Approach, pp. 31–50. Prentice Hall, New Jersey (1995)Google Scholar
  6. 6.
    Yoon, K.P., Hwang, C.: Multiple attribute decision making: An introduction. In: Lewis-Beck, M.S. (ed.) Quantitative Applications in the Social Sciences, vol. 104, pp. 1–75. Sage, Thousand Oaks (1995)Google Scholar
  7. 7.
    Caverlee, J., Liu, L., Rocco, D.: Discovering and ranking web services with BASIL: a personalized approach with biased focus. In: International Conference on Service-oriented Computing, pp. 153–162. ACM Press, New York (2004)CrossRefGoogle Scholar
  8. 8.
    Casati, F., Castellanos, M., Dayal, U., Shan, M.: Probabilistic, context-sensitive, and goal-oriented service selection. In: Second International Conference On Service Oriented Computing, New York, USA, pp. 316–321 (2004)Google Scholar
  9. 9.
    Chakraborty, D., Jaiswal, S.K., Misra, A., Nanavati, A.A.: Middleware architecture for evaluation and selection of 3rd party web services for service providers. In: IEEE International Conference on Web Services. IEEE Press, Los Alamitos (2005)Google Scholar
  10. 10.
    Day, J., Deters, R.: Selecting the best web service. In: Conference of the Centre for Advanced Studies on Collaborative research, Ontario, Canada, pp. 293–307. IBM Press (2004)Google Scholar
  11. 11.
    Kapp, E.A., Schtz, F., Connolly, L.M., et al.: An evaluation, comparison, and accurate benchmarking of several publicly available ms/ms search algorithms: Sensitivity and specificity analysis. Proteomics 5(13), 3475–3490 (2005)CrossRefGoogle Scholar
  12. 12.
    Dhyani, D., Wee, K., Showmick, S.S.: A survey of web metrics. ACM Computing Surveys 34(4), 469–503 (2002)CrossRefGoogle Scholar
  13. 13.
    Lee, K., Jeon, J., Lee, W., Jeong, S., Park, S.: Qos for web services: Requirements and possible approaches. Working group note, W3C (2003)Google Scholar
  14. 14.
    Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S.: Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20(18), 3551–3567 (1999)CrossRefGoogle Scholar
  15. 15.
    Craig, R., Beavis, R.C.: A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid communications in mass spectrometry 17, 2310–2316 (2003)CrossRefGoogle Scholar
  16. 16.
    Geer, L.Y., Markey, S.P., Kowalak, J.A., et al.: Open mass spectrometry search algorithm. Proteomics Research 3, 958–964 (2004)CrossRefGoogle Scholar
  17. 17.
    Boutilier, K., Ross, M., Podtelejnikov, A.V., Orsi, C., Taylor, R., Taylor, P., Figeys, D.: Comparison of different search engines using validated ms/ms test datasets. Analytica Chimica Acta 534, 11–20 (2005)CrossRefGoogle Scholar
  18. 18.
    Chamrad, D.C., Korting, G., Stuhler, K., Meyer, H.E., Klose, J., Bluggel, M.: Evaluation of algorithms for protein identification from sequence databases using mass spectrometry data. Proteomics 4(3), 619–628 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Maíra R. Rodrigues
    • 1
  • Michael Luck
    • 1
  1. 1.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations