Optical Computing and Computational Complexity

  • Damien Woods
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4135)


This work concerns the computational complexity of a model of computation that is inspired by optical computers. The model is called the continuous space machine and operates in discrete timesteps over a number of two-dimensional images of fixed size and arbitrary spatial resolution. The (constant time) operations on images include Fourier transformation, multiplication, addition, thresholding, copying and scaling. We survey some of the work to date on the continuous space machine. This includes a characterisation of the power of an important discrete restriction of the model. Parallel time corresponds, within a polynomial, to sequential space on Turing machines, thus satisfying the parallel computation thesis. A characterisation of the complexity class NC in terms of the model is also given. Thus the model has computational power that is (polynomially) equivalent to that of many well-known parallel models. Such characterisations give a method to translate parallel algorithms to optical algorithms and facilitate the application of the complexity theory toolbox to optical computers. In the present work we improve on these results. Specifically we tighten a lower bound and present some new resource trade-offs.


Discrete Fourier Transform Sequential Space Turing Machine Complexity Measure Image Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arsenault, H.H., Sheng, Y.: An introduction to optics in computers. Tutorial texts in optical engineering, vol. TT 8. SPIE (1992)Google Scholar
  2. 2.
    Balcázar, J.L., Díaz, J., Gabarró, J.: Structural complexity II. EATCS Monographs on Theoretical Computer Science, vol. 22. Springer, Berlin (1988)Google Scholar
  3. 3.
    Bracewell, R.N.: The Fourier transform and its applications, 2nd edn. Electrical and electronic engineering series. McGraw-Hill, New York (1978)MATHGoogle Scholar
  4. 4.
    Caulfield, H.J.: Space-time complexity in optical computing. In: Javidi, B. (ed.) Optical information-processing systems and architectures II, vol. 1347, pp. 566–572 (July 1990)Google Scholar
  5. 5.
    Chandra, A.K., Stockmeyer, L.J.: Alternation. In: 17th Annual Symposium on Foundations of Computer Science, Houston, Texas, pp. 98–108. IEEE, Los Alamitos (1976)CrossRefGoogle Scholar
  6. 6.
    Feitelson, D.G.: Optical Computing: A survey for computer scientists. MIT Press, Cambridge (1988)Google Scholar
  7. 7.
    Goldschlager, L.M.: Synchronous parallel computation. PhD thesis, University of Toronto, Computer Science Department (December 1977)Google Scholar
  8. 8.
    Goldschlager, L.M.: A universal interconnection pattern for parallel computers. Journal of the ACM 29(4), 1073–1086 (1982)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Goodman, J.W.: Introduction to Fourier optics, 2nd edn. McGraw-Hill, New York (1996)Google Scholar
  10. 10.
    Greenlaw, R., Hoover, H.J., Ruzzo, W.L.: Limits to parallel computation: P-completeness theory. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  11. 11.
    Karp, R.M., Ramachandran, V.: Parallel algorithms for shared memory machines. vol. A. Elsevier, Amsterdam (1990)Google Scholar
  12. 12.
    Lee, J.N.: Design issues in optical processing. In: Cambridge studies in modern optics. Cambridge University Press, Cambridge (1995)Google Scholar
  13. 13.
    Louri, A., Post, A.: Complexity analysis of optical-computing paradigms. Applied optics 31(26), 5568–5583 (1992)CrossRefGoogle Scholar
  14. 14.
    McAulay, A.D.: Optical computer architectures. Wiley, Chichester (1991)Google Scholar
  15. 15.
    Naughton, T., Javadpour, Z., Keating, J., Klíma, M., Rott, J.: General-purpose acousto-optic connectionist processor. Optical Engineering 38(7), 1170–1177 (1999)CrossRefGoogle Scholar
  16. 16.
    Naughton, T.J.: Continuous-space model of computation is Turing universal. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 121–128. Springer, Heidelberg (2006)Google Scholar
  17. 17.
    Naughton, T.J.: A model of computation for Fourier optical processors. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 24–34. Springer, Heidelberg (2006)Google Scholar
  18. 18.
    Naughton, T.J., Woods, D.: On the computational power of a continuous-space optical model of computation. In: Margenstern, M., Rogozhin, Y. (eds.) MCU 2001. LNCS, vol. 2055, pp. 288–299. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Parberry, I.: Parallel complexity theory. Wiley, Chichester (1987)MATHGoogle Scholar
  20. 20.
    Pratt, V.R., Rabin, M.O., Stockmeyer, L.J.: A characterisation of the power of vector machines. In: Proc. 6th Annual ACM Symposium on Theory of Computing, pp. 122–134. ACM Press, New York (1974)CrossRefGoogle Scholar
  21. 21.
    Pratt, V.R., Stockmeyer, L.J.: A characterisation of the power of vector machines. Journal of Computer and Systems Sciences 12, 198–221 (1976)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Reif, J.H., Tyagi, A.: Efficient parallel algorithms for optical computing with the discrete Fourier transform (DFT) primitive. Applied optics 36(29), 7327–7340 (1997)CrossRefGoogle Scholar
  23. 23.
    van Emde Boas, P.: Machine models and simulations. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science, ch. 1, vol. A. Elsevier, Amsterdam (1990)Google Scholar
  24. 24.
    VanderLugt, A.: Optical Signal Processing. Wiley Series in Pure and Applied Optics. Wiley, New York (1992)Google Scholar
  25. 25.
    Weihrauch, K.: Computable Analysis: An Introduction. Texts in Theoretical Computer Science. Springer, Berlin (2000)MATHGoogle Scholar
  26. 26.
    Woods, D.: Computational complexity of an optical model of computation. PhD thesis, National University of Ireland, Maynooth (2005)Google Scholar
  27. 27.
    Woods, D.: Upper bounds on the computational power of an optical model of computation. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, pp. 777–788. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  28. 28.
    Woods, D., Gibson, J.P.: Complexity of continuous space machine operations. In: Cooper, S.B., Löwe, B., Torenvliet, L. (eds.) CiE 2005. LNCS, vol. 3526, pp. 540–551. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  29. 29.
    Woods, D., Gibson, J.P.: Lower bounds on the computational power of an optical model of computation. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 237–250. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  30. 30.
    Woods, D., Naughton, T.J.: An optical model of computation. Theoretical Computer Science 334(1–3), 227–258 (2005)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Yu, F.T.S., Jutamulia, S., Yin, S. (eds.): Introduction to information optics. Academic Press, London (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Damien Woods
    • 1
  1. 1.Boole Centre for Research in Informatics, School of MathematicsUniversity College CorkIreland

Personalised recommendations