Mapping Non-conventional Extensions of Genetic Programming

  • W. B. Langdon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4135)


Conventional genetic programming research excludes memory and iteration. We have begun an extensive analysis of the space through which GP or other unconventional AI approaches search and extend it to consider explicit program stop instructions (T8) and any time models (T7). We report halting probability, run time and functionality (including entropy of binary functions) of both halting and anytime programs. Turing complete program fitness landscapes, even with halt, scale poorly.


Genetic Program Program Size Linear Genetic Programming Infinite Loop Short Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)MATHGoogle Scholar
  2. 2.
    Langdon, W.B., Poli, R.: On Turing complete T7 and MISC F-4 program fitness landscapes. Technical Report CSM-445, Computer Science, Uni. Essex, UK (2005)Google Scholar
  3. 3.
    Langdon, W.B., Poli, R.: The halting probability in von neumann architectures. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 225–237. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming – An Introduction. Morgan Kaufmann, San Francisco (1998)MATHGoogle Scholar
  5. 5.
    Teller, A.: Genetic programming, indexed memory, the halting problem, and other curiosities. In: FLAIRS, Pensacola, Florida, pp. 270–274. IEEE Press, Los Alamitos (1994)Google Scholar
  6. 6.
    Maxwell III, S.R.: Experiments with a coroutine model for genetic programming. IEEE World Congress on Computational Intelligence, 413a–417a (1994)Google Scholar
  7. 7.
    Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. The University of Illinois Press, Urbana (1964)Google Scholar
  8. 8.
    Chaitin, G.J.: An algebraic equation for the halting probability. In: Herken, R. (ed.) The Universal Turing Machine A Half-Century Survey, pp. 279–283. Oxford Univ. Press, Oxford (1988)Google Scholar
  9. 9.
    Calude, C.S., Dinneen, M.J., Shu, C.-K.: Computing a glimpse of randomness. Experimental Mathematics 11(3), 361–370 (2002)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • W. B. Langdon
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexUK

Personalised recommendations