Advertisement

Flexible Versus Rigid Tile Assembly

  • Nataša Jonoska
  • Gregory L. McColm
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4135)

Abstract

DNA molecules have been assembled in rigid DX and TX molecules, arrayed in assemblies similar to Wang tiles, and, as flexible branched junction molecules with flexible arms have been used in assemblies representing arbitrary graphs. This paper considers both models of rigid and flexible tiles. A model representing complexes assembled out of rigid tiles based on tile displacements is presented. This presentation is used to simulate computations obtained from (bounded) rigid tile self-assembly by corresponding assemblies of flexible tiles.

Keywords

Standard Position Tile Type Complete Complex Port Type Base Tile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cambridge Structural Database, Cambridge Crystallographic Data Centre, on-line at: http://www.ccdc.cam.ac.uk/
  2. 2.
    Carbone, A., Seeman, N.C.: Molecular tiling and DNA self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 61–83. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Desiraju, G.R.: Crystal Engineering: the Design of Organic Solids. Elsevier, Amsterdam (1989)Google Scholar
  4. 4.
    Foster, M.D., Treacy, M.M.J., Higgins, J.B., Rivin, I., Balkovsky, E., Randall, K.H.: A systematic topological search for the framework of ZSM-10. J. Appl. Crystallography 38, 1028–1030 (2005), http://www.hypotheticalzeolites.net/ CrossRefGoogle Scholar
  5. 5.
    Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)CrossRefGoogle Scholar
  6. 6.
    Jonoska, N., Liao, S., Seeman, N.C.: Transducers with Programmable Input by DNA Self-assembly. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)CrossRefGoogle Scholar
  8. 8.
    Jonoska, N., McColm, G.L.: A Computational Model for Self-assembling Flexible Tiles. In: Calude, C.S., Dinneen, M.J., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 142–156. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Jonoska, N., McColm, G.L.: From rigid tiles to flexible and back (in preparation)Google Scholar
  10. 10.
    Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic Self-assembly of DNA Sierpinski Triangles. PLoS Biology 2(12) (2004), available at: http://biology.plosjournals.org/
  11. 11.
    Rothemund, P.W.K., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)Google Scholar
  12. 12.
    Sa-Ardyen, P., Jonoska, N., Seeman, N.: Self-assembling DNA graphs. Natural Computing 2(4), 427–438 (2003)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Service, R.F.: How Far Can We Push Chemical Self-Assembly? Science 309(5731), 95 (2005)CrossRefGoogle Scholar
  14. 14.
    Winfree, E.: Self healing tile sets. In: Chen, J., Jonoska, N., Rozenberg, G. (eds.) Nanotechnology: Science and Computation, pp. 55–74. Springer, Heidelberg (2005)Google Scholar
  15. 15.
    Winfree, E., Yang, X., Seeman, N.C.: Universal computation via self-assembly of DNA: some theory and experiments. In: Landweber, L., Baum, E. (eds.) DNA based computers II. AMS DIMACS, vol. 44, pp. 191–214 (1998)Google Scholar
  16. 16.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998)CrossRefGoogle Scholar
  17. 17.
    Zaworotko, M.J.: Superstructural diversity in two dimensions: crystal engineering of laminated solids. Chemical Communications (1), 1–9 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nataša Jonoska
    • 1
  • Gregory L. McColm
    • 1
  1. 1.Department of MathematicsUniversity of South FloridaTampa

Personalised recommendations