Chemical Information Processing Devices Constructed Using a Nonlinear Medium with Controlled Excitability

  • Yasuhiro Igarashi
  • Jerzy Gorecki
  • Joanna Natalia Gorecka
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4135)


Chemical signals composed of excitation pulses can be processed in a medium with an appropriate geometrical arrangement of excitable and non-excitable regions. In this paper we consider two types of signal processing devices: a binary logic gate and a four input, neuron like structure. Using numerical simulations, we demonstrate that small local changes in the excitability level of the medium can completely change the function executed by the device and can thus be used to program it.


Excitation Pulse Excitable Medium Input Pulse Input Channel Illumination Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamatzky, A., Costello, D.B., Asai, T.: Reaction-Diffusion Computers. Elsevier Science, Amsterdam (2005)Google Scholar
  2. 2.
    Asai, T., Nishiyama, Y., Amemiya, Y.: A CMOS reaction-diffusion circuit based on cellular-automaton processing emulating the Belousov-Zhabotinsky reaction. IEICE Trans. Fund. E85-A, 2093–2096 (2002)Google Scholar
  3. 3.
    Motoike, I., Yoshikawa, K.: Information Operations with an Excitable Field. Phys. Rev. E. 59, 5354–5360 (1999)CrossRefGoogle Scholar
  4. 4.
    Motoike, N.I., Yoshikawa, K., Iguchi, Y., Nakata, S.: Real-Time Memory on an Excitable Field. Phys. Rev. E. 63(1–4), 036220 (2001)CrossRefGoogle Scholar
  5. 5.
    Gorecki, J., Yoshikawa, K., Igarashi, Y.: On chemical reactors that can count. J. Phys. Chem. A 107, 1664–1669 (2003)CrossRefGoogle Scholar
  6. 6.
    Gorecka, J., Gorecki, J.: T-shaped coincidence detector as a band filter of chemical signal frequency. Phys. Rev. E 67(1–4), 67203 (2003)CrossRefGoogle Scholar
  7. 7.
    Motoike, N.I., Yoshikawa, K.: Information operations with multiple pulses on an excitable field. Chaos, Solitons & Fractals 17, 455–461 (2003)CrossRefGoogle Scholar
  8. 8.
    Nagahara, H., Ichino, T., Yoshikawa, K.: Direction detector on an excitable field: Field computation with coincidence detection. Phys. Rev. E 70(1–5), 36221 (2004)CrossRefGoogle Scholar
  9. 9.
    Motoike, N.I., Adamatzky, A.: Three-valued logic gates in reaction–diffusion excitable media. Chaos, Solitons & Fractals 24, 107–114 (2005)MathSciNetMATHGoogle Scholar
  10. 10.
    Gorecki, J., Gorecka, J., Yoshikawa, K., Igarashi, Y., Nagahara, H.: Sensing the distance to a source of periodic oscillations in a nonlinear chemical medium with the output information coded in frequency of excitation pulses. Phys. Rev. E 72(1–7), 46201 (2005)CrossRefGoogle Scholar
  11. 11.
    Adamatzky, A.: Programming Reaction-Diffusion Processors. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 33–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Agladze, K., Aliev, R.R., Yamaguchi, T., Yoshikawa, K.: Chemical diode. J. Phys. Chem. 100, 13895–13897 (1996)CrossRefGoogle Scholar
  13. 13.
    Brandstadter, H., Braune, M., Schebesch, I., Engel, H.: Experimental study of the dynamics of spiral pairs in light-sensitive Belousov-Zhabotinskii media using an open-gel reactor. Chem. Phys. Lett. 323, 145–154 (2000)CrossRefGoogle Scholar
  14. 14.
    Sendina-Nadal, I., Mihaliuk, E., Wang, J., Perez-Munuzuri, V., Showalter, K.: Wave propagation in subexcitable media with periodically modulated excitability. Phys. Rev. Lett. 86, 1646–1649 (2001)CrossRefGoogle Scholar
  15. 15.
    Sakurai, T., Mihaliuk, E., Chirila, F., Showalter, K.: Design and control of wave propagation patterns in excitable media. Science 296, 2009–2012 (2002)CrossRefGoogle Scholar
  16. 16.
    Adamatzky, A.: Collision-based computing in Belousov–Zhabotinsky medium Chaos. Solitons & Fractals 21, 1259–1264 (2004)CrossRefMATHGoogle Scholar
  17. 17.
    Sielewiesiuk, J., Gorecki, J.: Complex transformations of chemical signals passing through a passive barrier. Phys. Rev. E 66(1–9), 16212 (2002)CrossRefGoogle Scholar
  18. 18.
    Gossen, C., Niedernostheide, J.F., Purwins, G.H.: Pattern Formation of the Electroluminescence in AC ZnS: Mn Devices. In: Nonlinear Dynamics and Pattern Formation in Semiconductors and Devices, Springer Proceedings in Physics, vol. 79, pp. 112–132. Springer, Berlin (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yasuhiro Igarashi
    • 1
  • Jerzy Gorecki
    • 1
    • 2
  • Joanna Natalia Gorecka
    • 3
  1. 1.Institute of Physical ChemistryPolish Academy of SciencesWarsawPoland
  2. 2.Faculty of Mathematics and Natural SciencesCardinal Stefan Wyszynski UniversityWarsawPoland
  3. 3.Institute of PhysicsPolish Academy of SciencesWarsawPoland

Personalised recommendations