Beam-ACO Applied to Assembly Line Balancing

  • Christian Blum
  • Joaquín Bautista
  • Jordi Pereira
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)


Assembly line balancing concerns the design of assembly lines for the manufacturing of products. In this paper we consider the time and space constrained simple assembly line balancing problem with the objective of minimizing the number of necessary work stations. This problem is denoted by TSALBP-1 in the literature. For tackling this problem we propose a Beam-ACO approach, which is an algorithm that results from hybridizing ant colony optimization with beam search. The experimental results show that our algorithm is a state-of-the-art metaheuristic for this problem.


Work Station Problem Instance Assembly Line Assembly Line Balance Heuristic Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scholl, A., Becker, C.: State-of-the-art exact and heuristic solution procedures for simple assembly line balancing. European Journal of Operational Research 168(3), 666–693 (2006)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Baker, K.R.: Introduction to sequencing and scheduling. Wiley, New York (1974)Google Scholar
  3. 3.
    Talbot, F.B., Patterson, J.H., Gehrlein, J.H.: A comparative evaluation of heuristic line balancing techniques. Management Science 32, 430–454 (1986)CrossRefGoogle Scholar
  4. 4.
    Johnson, R.V.: Optimally balancing large assembly lines with “FABLE”. Management Science 34, 240–253 (1988)CrossRefGoogle Scholar
  5. 5.
    Hoffmann, T.R.: EUREKA: A hybrid system for assembly line balancing. Management Science 38, 39–47 (1992)MATHCrossRefGoogle Scholar
  6. 6.
    Scholl, A., Klein, R.: SALOME: A bidirectional branch and bound procedure for assembly line balancing. INFORMS Journal on Computing 9, 319–334 (1997)MATHCrossRefGoogle Scholar
  7. 7.
    Sprecher, A.: Dynamic search tree decomposition for balancing assembly lines by parallel search. International Journal of Production Research 41, 1423–1430 (2003)CrossRefGoogle Scholar
  8. 8.
    Scholl, A., Voss, S.: Simple assembly line balancing—Heuristic approaches. Journal of Heuristics 2, 217–244 (1996)CrossRefGoogle Scholar
  9. 9.
    Lapierre, D.L., Ruiz, A., Soriano, P.: Balancing assembly lines with tabu search. European Journal of Operational Research 168, 826–837 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Vilarinho, P.M., Simaria, A.: A two-stage heuristic method for balancing mixed-model assembly lines with parallel workstations. International Journal of Production Research, 1405–1420 (2002)Google Scholar
  11. 11.
    Gonçalves, J.F., de Almeida, J.R.: A hybrid genetic algorithm for assembly line balancing. Journal of Heuristics 8, 629–642 (2002)CrossRefGoogle Scholar
  12. 12.
    Bautista, J., Pereira, J.: Ant algorithms for assembly line balancing. In: Dorigo, M., Di Caro, G.A., Sampels, M. (eds.) Ant Algorithms 2002. LNCS, vol. 2463, pp. 65–75. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Bautista, J., Pereira, J.: Ant algorithms for a time and space constrained assembly line balancing problem. European Journal of Operational Research (in press, 2006)Google Scholar
  14. 14.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Blum, C.: Beam-ACO—Hybridizing ant colony optimization with beam search: An application to open shop scheduling. Computers & Operations Research 32(6), 1565–1591 (2005)CrossRefGoogle Scholar
  16. 16.
    Ow, P.S., Morton, T.E.: Filtered beam search in scheduling. International Journal of Production Research 26, 297–307 (1988)CrossRefGoogle Scholar
  17. 17.
    Fügenschuh, A.: Parametrized greedy heuristics in theory and practice. In: Blesa, M.J., Blum, C., Roli, A., Sampels, M. (eds.) HM 2005. LNCS, vol. 3636, pp. 21–31. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Blum, C., Bautista, J., Pereira, J.: Beam-ACO applied to assembly line balancing. Technical Report LSI-06-22-R, LSI, Universitat Politècnica de Catalunya, Barcelona, Spain (2006)Google Scholar
  19. 19.
    Merkle, D., Middendorf, M.: An ant algorithm with a new pheromone evaluation rule for total tardiness problems. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 287–296. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Blum, C., Dorigo, M.: The hyper-cube framework for ant colony optimization. IEEE Transactions on Systems, Man, and Cybernetics – Part B 34(2), 1161–1172 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian Blum
    • 1
  • Joaquín Bautista
    • 2
  • Jordi Pereira
    • 3
  1. 1.ALBCOM, Dept. Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.ETSEIB, Nissan ChairUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.ETSEIB, Dept. d’Organitzacíó d’EmpresesUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations