An Enhanced Aggregation Pheromone System for Real-Parameter Optimization in the ACO Metaphor

  • Shigeyoshi Tsutsui
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)


In previous papers we proposed an algorithm for real parameter optimization called the Aggregation Pheromone System (APS). The APS replaces pheromone trails in traditional ACO with aggregation pheromones. The pheromone update rule is applied in a way similar to that of ACO. In this paper, we proposed an enhanced APS (eAPS), which uses a colony model with units. It allows a stronger exploitation of better solutions found and at the same time it can prevent premature stagnation of the search. Experimental results showed eAPS has higher performance than APS. It has also shown that the parameter settings for eAPS are more robust than for APS.


Good Individual Vehicle Route Problem Aggregation Pheromone Cholesky Decomposition Strong Exploitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a colony of cooperating agents. IEEE Trans. on SMC-Part B 26(1), 29–41 (1996)Google Scholar
  2. 2.
    Dorigo, M., Gambardella, L.M.: Ant colony system: A cooperative learning approach to the traveling salesman problem. IEEE Trans. on EC 1(1), 53–66 (1997)Google Scholar
  3. 3.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT press, Massachusetts (2004)MATHCrossRefGoogle Scholar
  4. 4.
    Stützle, T., Hoos, H.: Max-min ant system. Future Generation Computer Systems 16(9), 889–914 (2000)CrossRefGoogle Scholar
  5. 5.
    Maniezzo, V.: Exact and approximate nondeterministic tree-search procedures for the quadratic assignment problem. Research Report CSR 98-1 (1998)Google Scholar
  6. 6.
    Forsyth, P., Wren, A.: An ant system for bus driver scheduling. In: Proc. of the 7th Int. Workshop on Computer-Aided Scheduling of Public Transport (1997)Google Scholar
  7. 7.
    Bullnheimer, B., Hartl, R.F., Strauss, C.: Applying the Ant System to the Vehicle Routing Problem. In: voss, s. (ed.) Meta-heuristics: Advances and trends in local search paradigms for optimization, Kluwer, Dordrecht (1999)Google Scholar
  8. 8.
    Bilchev, G., Parmee, I.C.: The ant colony metaphor for searching continuous design spaces. In: Proc. of the AISB Workshop on Evo. Comp., pp. 24–39 (1995)Google Scholar
  9. 9.
    Mathur, M., Karle, S.B., Priye, S., Jyaraman, V.K., Kulkarni, B.D.: Ant colony approach to continuous function optimization. Ind. Eng. Chem. Res. 39, 3814–3822 (2000)CrossRefGoogle Scholar
  10. 10.
    Wodrich, M., Bilchev, G.: Cooperative distribution search: the ant’t way. Control Cybernetics 3, 413–446 (1997)MathSciNetGoogle Scholar
  11. 11.
    Monmarch’e, N., Venturini, G., Slimane, M.: On how pachycondyla apicalis ants suggest a new search algorithm. Future Generation Computer Systems 16(8), 937–946 (2000)CrossRefGoogle Scholar
  12. 12.
    Dreo, J., Siarry, P.: A new ant colony algorithm using the heterarchical concept aimed at optimization of multiminima continuous functions. In: Proc. of the Third Int. Workshop on Ant Algorithms (ANTS 2002), pp. 216–221 (2002)Google Scholar
  13. 13.
    Pourtakdoust, S.H., Nobahari, H.: An extension of ant colony system to continuous optimization problems. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 294–301. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Socha, K.: ACO for continuous and mixed-variable optimization. In: Dorigo, M., Birattari, M., Blum, C., Gambardella, L.M., Mondada, F., Stützle, T. (eds.) ANTS 2004. LNCS, vol. 3172, pp. 25–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  15. 15.
    Tsutsui, S.: Ant colony optimisation for continuous domains with aggregation pheromones metaphor. In: Proc. of the fifth Int. Conf. on Recent Advances in Soft Computing, pp. 207–212 (2004)Google Scholar
  16. 16.
    Tsutsui, S., Pelikan, M., Ghosh, A., CEC, I.E.E.E.: Performance of aggregation pheromone system on unimodal and multimodal problems. In: Proc. of the 2005 IEEE CEC, pp. 880–887 (2005)Google Scholar
  17. 17.
    Bell, W.J., Car, R.T.: Chemical ecology of insects. Journal of Applied Ecology 22(1), 299–300 (1985)CrossRefGoogle Scholar
  18. 18.
    Schatzman, M., Taylor, J., Schatzman, M.: Numerical Analysis: A Mathematical Introduction. Oxford University Press, Oxford (2002)MATHGoogle Scholar
  19. 19.
    Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation 10(4), 371–395 (2002)CrossRefGoogle Scholar
  20. 20.
    Higuchi, T., Tsutsui, S., Yamamura, M.: Theoretical analysis of simplex crossover for real-coded genetic algorithms. In: Proc. of the PPSN VI, pp. 365–374 (2000)Google Scholar
  21. 21.
    Pelikan, M., Goldberg, D.E., Lobo, F.: A survey of optimization by building and using probabilistic models. Computational Optimization and Applications 21(1), 5–20 (2002)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Hansen, N., Ostermeier, A.: Adapting arbitrary normal mutation distributions in evolution strategies: The covariance matrix adaptation. In: Proc. of the 1996 CEC, pp. 312–317 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shigeyoshi Tsutsui
    • 1
  1. 1.Hannan UniversityMatsubara, OsakaJapan

Personalised recommendations