Advertisement

Geoacoustic Inversion and Uncertainty Analysis with \(\mathcal{MAX-MIN}\) Ant System

  • Vincent van Leijen
  • Jean-Pierre Hermand
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)

Abstract

Inverse problems in ocean acoustics are generally solved by means of matched field processing in combination with metaheuristic global search algorithms. Solutions that describe acoustical properties of the bed and subbottom in a shallow water environment are typically approximations that require uncertainty analysis. This work compares Ant Colony Optimization with other metaheuristics for geoacoustic inversion, particularly Genetic Algorithms. It is demonstrated that a \(\mathcal{MAX}\)-\(\mathcal{MIN}\) Ant System can find good estimates and provide uncertainty analysis. In addition, the algorithm can easily be tuned, but proper tuning does not guarantee that every run will converge given a limited processing time. Another concern is that a single optimization run may find a solution while there is no clear indication on the accuracy. Both issues can be solved when probability distributions are based on parallel \(\mathcal{MAX-MIN}\) Ant System runs.

Keywords

Genetic Algorithm Uncertainty Analysis Shallow Water Environment Evaporation Factor Tuning Result 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Caiti, A., Chapman, N., Hermand, J.P., Jesus, S. (eds.): Acoustic Sensing Techniques for the Shallow Water Environment Inversion Methods and Experiments. Springer, Heidelberg (2006)Google Scholar
  2. 2.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  3. 3.
    Gerstoft, P.: Inversion of seismoacoustic data using genetic algorithms and a posteriori probability distributions. J. Acoust. Soc. Am. 95(2), 770–782 (1994)CrossRefGoogle Scholar
  4. 4.
    Hermand, J.P., Gerstoft, P.: Inversion of broad-band multitone acoustic data from the yellow shark summer experiments. IEEE Journal of Oceanographic Engineering 21(4), 324–346 (1996)CrossRefGoogle Scholar
  5. 5.
    Hermand, J.P.: Broad-band geoacoustic inversion in shallow water from waveguide impulse response measurements on a single hydrophone: Theory and experimental results. IEEE Journal of Oceanographic Engineering 24(1), 41–66 (1999)CrossRefGoogle Scholar
  6. 6.
    Hermand, J.P., Holland, C.: Geoacoustic characterisation of fine-grained sediments using single and multiple bottom reflection data. In: Shallow Water Environments. Volume Marine Geophysical Researches, Special Volume on Subsurface Imaging and Sediment Characterization of 26, pp. 267–274 (2005)Google Scholar
  7. 7.
    Tolstoy, A.: Matched Field Processing for Underwater Acoustics. World Scientific, Singapore (1993)MATHGoogle Scholar
  8. 8.
    Gerstoft, P., Mecklenbräuker, C.F.: Ocean acoustic inversion with estimation of a posteriori probability distributions. J. Acoust. Soc. Am. 104(2), 808–819 (1998)CrossRefGoogle Scholar
  9. 9.
    van Leijen, A., Hermand, J.P.: Geoacoustic inversion with ant colony optimisation. In: Jesus, S., Ródriguez, O. (eds.) Proceedings of the Eighth European Conference on Underwater Acoustics, 8th ECUA, Carvoeiro, Portugal (2006)Google Scholar
  10. 10.
    Stützle, T., Hoos, H.: The \(\mathcal{MAX-MIN}\) ant system and local search for the traveling salesman problem. In: Bäck, T., Michalewicz, Z., Yao, X. (eds.) Proceedings of the 1997 IEEE International Conference on Evolutionary Computation (ICEC 1997), Piscataway, NJ, pp. 309–314. IEEE Press, Los Alamitos (1997)CrossRefGoogle Scholar
  11. 11.
    Birattari, M.: The problem of tuning metaheuristics as seen from a machine learning perspective. Ph.D thesis, Université Libre de Bruxelles (2004)Google Scholar
  12. 12.
    Birattari, M., Stützle, T., Paquete, L., Varrentrapp, K.: A racing algorithm for configuring metaheuristics. In: Langdon, W.B. (ed.) Proceedings of the Genetic and Evolutionary Computation Conference, USA, pp. 11–18. Morgan Kaufmann, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vincent van Leijen
    • 1
  • Jean-Pierre Hermand
    • 1
    • 2
  1. 1.Combat Systems Department, Royal Netherlands Naval CollegeDen HelderThe Netherlands
  2. 2.Environmental hydroacoustics labUniversité libre de BruxellesBrusselsBelgium

Personalised recommendations