Data clustering is one of important research topics of data mining. In this paper, we propose a new clustering algorithm based on ant colony optimization, called Ant Colony Optimization for Clustering (ACOC). At the core of the algorithm we use both the accumulated pheromone and the heuristic information, the distances between data objects and cluster centers of ants, to guide artificial ants to group data objects into proper clusters. This allows the algorithm to perform the clustering process more effectively and efficiently. Due to the nature of stochastic and population-based search, the ACOC can overcome the drawbacks of traditional clustering methods that easily converge to local optima. Experimental results show that the ACOC can find relatively good solutions.


Cluster Center Data Object Heuristic Information Memory List Initial Cluster Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Han, J., Kamber, M.: Data mining: Concepts and Techniques. Morgan Kaufmann Publisher, San Francisco (2001)Google Scholar
  2. 2.
    Peña, J.M., Lozano, J.A., Larrañaga, P.: An empirical comparison of four initialization methods for the K-Means algorithm. Pattern Recognition Letters 20, 1027–1040 (1999)CrossRefGoogle Scholar
  3. 3.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Colony of Cooperating Agents. IEEE Trans. Sys. Man Cyb. B 26, 29–41 (1996)CrossRefGoogle Scholar
  4. 4.
    Dorigo, M., Gambardella, L.: Ant Colony System: A Cooperative Learning Approach to the Traveling Salesman Problem. IEEE Trans. Evol. Comp. 1, 53–66 (1997)CrossRefGoogle Scholar
  5. 5.
    Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chretien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proc. Of the 1st Conf. on Sim. of Adaptive Behavior, pp. 356–363 (1991)Google Scholar
  6. 6.
    Handl, J., Knowles, J., Dorigo, M.: Ant-based clustering and topographic mapping. Artificial Life 12, 35–61 (2006)CrossRefGoogle Scholar
  7. 7.
    Al-Sultan, K.S.: A tabu search approach to the clustering problem. Pattern Recognition 28, 1443–1451 (1995)CrossRefGoogle Scholar
  8. 8.
    Welch, J.W.: J. Stat. Comput. Simulat. 15, 17–25 (1983)MathSciNetGoogle Scholar
  9. 9.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Maulik, U., Bandyopadhyay, S.: Genetic algorithm-based clustering technique. Pattern Recognition 33, 1455–1465 (2000)CrossRefGoogle Scholar
  11. 11.
    Shelokar, P.S., Jayaraman, V.K., Kulkarni, B.D.: An ant colony approach for clustering. Analytica Chimica Acta 509, 187–195 (2004)CrossRefGoogle Scholar
  12. 12.
    UCI Repository of Machine Learning Databases (1998),

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yucheng Kao
    • 1
  • Kevin Cheng
    • 1
  1. 1.Tatung UniversityTaipeiTaiwan

Personalised recommendations