A Parallel ACO Approach Based on One Pheromone Matrix

  • Qiang Lv
  • Xiaoyan Xia
  • Peide Qian
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)


This paper presents and implements an approach to parallel ACO algorithms. The principal idea is to make multiple ant colonies share and utilize only one pheromone matrix. We call it SHOP (SHaring One Pheromone matrix) approach. We apply this idea to the two currently best instances of ACO sequential algorithms (MMAS and ACS), and try to hybridize these two different ACO instances. We mainly describe how to design parallel ACS and MMAS based on SHOP. We present our computing results of applying our approach to solving 10 symmetric traveling salesman problems, and give comparisons with the relevant sequential versions under the fair computing environment. The experimental results indicate that SHOP-ACO algorithms perform overall better than the sequential ACO algorithms in both the computation time and solution quality.


Master Thread Pheromone Matrix Chinese Word Segmentation Parallel Computing Platform Symmetric Travel Salesman Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the ant system. Applied Optimization 24, 87–100 (1998)Google Scholar
  2. 2.
    Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal of Heuristics 8(3), 305–320 (2002)MATHCrossRefGoogle Scholar
  3. 3.
    Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for combinatorial optimization problems. In: Rolim, J.D.P. (ed.) IPPS-WS 1999 and SPDP-WS 1999. LNCS, vol. 1586, pp. 239–247. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Talbi, E.G., Roux, O., Fonlupt, C., Robillard, D.: Parallel ant colonies for the quadratic assignment problem. Future Generation Computer Systems 17, 441–449 (2001)MATHCrossRefGoogle Scholar
  6. 6.
    Randall, M., Lewis, A.: A parallel implementation of ant colony optimization. Journal of Parallel and Distributed Computing 62, 1421–1432 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Chu, S.C., Roddick, J.F., Pan, J.S., Su, C.J.: Parallel ant colony systems. In: Zhong, N., Raś, Z.W., Tsumoto, S., Suzuki, E. (eds.) ISMIS 2003. LNCS (LNAI), vol. 2871, pp. 279–284. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Delisle, P., Krajecki, M., Gravel, M., Gagné, C.: Parallel implementation of an ant colony optimization metaheuristic with openmp. In: International Conference on Parallel Architectures and Compilation Techniques (2001)Google Scholar
  9. 9.
  10. 10.
    Fischer, D.: On super linear speedups. Parallel Computing 17, 695–697 (1991)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qiang Lv
    • 1
  • Xiaoyan Xia
    • 2
  • Peide Qian
    • 1
  1. 1.School of Computer Science and TechnologySoochow UniveristyP.R. China
  2. 2.Jiangsu Provincial Key Lab of Computer Information Processing TechnologySuzhouP.R. China

Personalised recommendations