A Stochastic Traffic Assignment Algorithm Based on Ant Colony Optimisation

  • Luca D’Acierno
  • Bruno Montella
  • Fortuna De Lucia
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)


In this paper we propose a Stochastic User Equilibrium (SUE) algorithm that can be adopted as a model, known as a simulation model, that imitates the behaviour of transportation systems. Indeed, analyses of real dimension networks need simulation algorithms that allow network conditions and performances to be rapidly determined. Hence, we developed an MSA (Method of Successive Averages) algorithm based on the Ant Colony Optimisation paradigm that allows transportation systems to be simulated in less time but with the same accuracy as traditional MSA algorithms. Finally, by means of Blum’s theorem, we stated theoretically the convergence of the proposed ACO-based algorithm.


Assignment Problem Network Design Problem Assignment Algorithm Pheromone Trail Stochastic User Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cantarella, G.E.: A general fixed-point approach to multimodal multi-user equilibrium assignment with elastic demand. Transport. Sci. 31, 107–128 (1997)MATHCrossRefGoogle Scholar
  2. 2.
    Colorni, A., Dorigo, M., Maniezzo, V.: Distributed optimization by ant colonies. In: Varela, F.J., Bourgine, P. (eds.) Toward a practice of autonomous systems: Proceedings of the First European Conference on Artificial Life, pp. 134–142. The MIT Press, Cambridge (1992)Google Scholar
  3. 3.
    Colorni, A., Dorigo, M., Maniezzo, V.: An investigation of some properties of an ant algorithm. In: Männer, R., Manderick, B. (eds.) Proceedings of PPSN II, pp. 509–520. Elsevier, Amsterdam (1992)Google Scholar
  4. 4.
    Dorigo, M.: Optimization, learning and natural algorithms (in Italian). PhD thesis, Department of Electronics, Polytechnic of Milan, Italy (1992)Google Scholar
  5. 5.
    Dorigo, M., Stützle, T.: Ant colony optimization. The MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Poorzahedy, H., Abulghasemi, F.: Application of ant system to network design problem. Transportation 32, 251–273 (2005)CrossRefGoogle Scholar
  7. 7.
    Mussone, L., Ponzi, M., Matteucci, M.: Ant colony optimization for stochastic user equilibrium. In: Bifulco, G.N. (ed.) I sistemi stradali di trasporto nella societá dell’informazione, pp. 175–199. Aracne Editrice (2005)Google Scholar
  8. 8.
    Frank, M., Wolfe, P.: An algorithm for quadratic programming. Nav. Res. Log. Quart. 3, 95–110 (1956)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Gutjahr, W.J.: A graph-based ant system and its convergence. Future Gener. Comp. Sy. 16, 873–888 (2000)CrossRefGoogle Scholar
  10. 10.
    Gutjahr, W.J.: A converging ACO algorithm for stochastic combinatorial optimization. In: Albrecht, A.A., Steinhöfel, K. (eds.) SAGA 2003. LNCS, vol. 2827, pp. 10–25. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Chang, H.S., Gutjahr, W.J., Yang, J., Park, S.: An ant system based approach to markov decision processes. In: Proceedings of the 2004 American Control Conference, Boston (MA), USA, pp. 3820–3825 (2004)Google Scholar
  12. 12.
    Dorigo, M., Blum, C.: Ant colony optimization theory: a survey. Theor. Comput. Sci. 344, 243–278 (2005)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cascetta, E.: Transportation systems engineering: theory and methods. Kluwer Academic Publisher, Dordrecht (2001)MATHGoogle Scholar
  14. 14.
    Blum, J.R.: Multidimensional stochastic approximation methods. Ann. Math. Stat. 25, 737–744 (1954)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dial, R.B.: A probabilistic multipath traffic assignment model which obviates path enumeration. Transport. Res. 5, 83–111 (1971)CrossRefGoogle Scholar
  16. 16.
    D’Acierno, L., Montella, B., Gallo, M.: Multimodal assignment to congested networks: fixed-point models and algorithms. In: Proceedings of European Transport Conference 2002, Cambridge, United Kingdom (2002)Google Scholar
  17. 17.
    Li, Y., Gong, S.: Dynamic ant colony optimisation for TSP. Int. J. Adv. Manuf. Tech. 22, 528–533 (2003)CrossRefGoogle Scholar
  18. 18.
    Nguyen, S., Pallottino, S., Gendreau, M.: Implicit enumeration of hyperpaths in a logit model for transit networks. Transport. Sci. 32, 54–64 (1998)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca D’Acierno
    • 1
  • Bruno Montella
    • 1
  • Fortuna De Lucia
    • 1
  1. 1.Dept. of Transportation Engineering‘Federico II’ UniversityNaplesItaly

Personalised recommendations