Traffic Patterns and Flow Characteristics in an Ant Trail Model

  • Alexander John
  • Andreas Schadschneider
  • Debashish Chowdhury
  • Katsuhiro Nishinari
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)


We have constructed a minimal cellular automaton model for simulating traffic on preexisting ant trails. Uni- as well as bidirectional trails are investigated and characteristic patterns in the distribution of workers on the trail are identified. Some of these patterns have already been observed empirically. They give rise to unusual flow characteristics which are also discussed. The question of possible functions of the observed traffic patterns and the resulting flow characteristics will be treated for simplified biological scenarios.


Average Velocity Social Insect Cellular Automaton Model Totally Asymmetric Simple Exclusion Process Asymmetric Simple Exclusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Nagel, K., Schreckenberg, M.: A cellular automaton model for freeway traffic. J. Phys. I France 2, 2221 (1992)CrossRefGoogle Scholar
  3. 3.
    Chowdhury, D., Santen, L., Schadschneider, A.: Statistical physics of vehicular traffic and some related systems. Phys. Rep. 329, 199–329 (2000)CrossRefMathSciNetGoogle Scholar
  4. 4.
    O’Loan, O.J., Evans, M.R., Cates, M.E.: Jamming transition in a homogeneous one-dimensional system: The bus route model. Phys. Rev. E 58, 1404 (1998)CrossRefGoogle Scholar
  5. 5.
    Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Physica A 312, 260 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Schadschneider, A., Kirchner, A., Nishinari, K.: From ant trails to pedestrian dynamics. Applied Bionics and Biomechanics 1, 11 (2003)CrossRefGoogle Scholar
  7. 7.
    Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sinauer Associates (2001)Google Scholar
  8. 8.
    Chowdhury, D., Schadschneider, A., Nishinari, K.: Physics of transport and traffic phenomena in biology: from molecular motors and cells to organisms. Phys. Life Rev. 2, 318–352 (2005)CrossRefGoogle Scholar
  9. 9.
    Burd, M., Aranwela, N.: Head-on encounter rates and walking speed of foragers in leaf-cutting ant traffic. Insectes Soc. 50, 3–8 (2003)CrossRefGoogle Scholar
  10. 10.
    Burd, M., Archer, D., Aranwela, N., Stradling, D.J.: Traffic dynamics of the leaf-cutting ant, atta cephalotes. American Natur. 159, 283–293 (2002)CrossRefGoogle Scholar
  11. 11.
    Dussutour, A., Fourcassié, V., Helbing, D., Deneubourg, J.L.: Optimal traffic organization under crowded condition. Nature 428, 70 (2004)CrossRefGoogle Scholar
  12. 12.
    Dussutour, A., Deneubourg, J.L., Fourcassié, V.: Temporal organization of bi-directional traffic in the ant lasius niger (l.). Jrl. Exp. Biol. (2005)Google Scholar
  13. 13.
    Couzin, I.D., Franks, N.R.: Self-organized lane formation and optimized traffic flow in army ants. Proc. Roy. Soc. London B 270, 139–146 (2003)CrossRefGoogle Scholar
  14. 14.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, Oxford (1999)MATHGoogle Scholar
  15. 15.
    Bonabeau, E., Dorigo, M., Theraulaz, G.: Inspiration for optimization from social insect behaviour. Nature 406, 39–42 (2000)CrossRefGoogle Scholar
  16. 16.
    Hölldobler, B., Wilson, E.O.: The Ants. Cambridge, Belknap (1990)Google Scholar
  17. 17.
    Chowdhury, D., Nishinari, K., Schadschneider, A.: Self-organized patterns and traffic flow in colonies of organisms: from bacteria and social insects to vertebrates. Phase Trans. 77, 601 (2004)CrossRefGoogle Scholar
  18. 18.
    Kunwar, A., John, A., Nishinari, K., Schadschneider, A., Chowdhury, D.: Collective traffic-like movement of ants on a trail: dynamical phases and phase transitions. J. Phys. Soc. Jpn. 73, 2979 (2004)MATHCrossRefGoogle Scholar
  19. 19.
    Moffet, M.W.: Ants that go with the flow: A new method of orientation by mass communication. Naturwissenschaften 74, 551–553 (1987)CrossRefGoogle Scholar
  20. 20.
    Camazine, S., Deneubourg, J.L., Franks, N.R., Sneyd, J., Theraulaz, G., Bonabeau, E.: Self-organization in Biological Systems. Princeton University Press, Princeton (2001)Google Scholar
  21. 21.
    Chowdhury, D., Guttal, V., Nishinari, K., Schadschneider, A.: A cellular-automata model of flow in ant-trails: Non-monotonic variation of speed with density. J. Phys. A: Math. Gen. 35, L573–L577 (2002)CrossRefMathSciNetGoogle Scholar
  22. 22.
    John, A., et al.: (in preparation)Google Scholar
  23. 23.
    Schadschneider, A., Chowdhury, D., John, A., Nishinari, K.: Anomalous fundamental diagrams in traffic on ant trails. In: Hoogendoorn, S., Luding, S., Bovy, P., Schreckenberg, M., Wolf, D. (eds.) Proceedings of Traffic and Granular Flow 2003. Springer, Heidelberg (2003)Google Scholar
  24. 24.
    John, A., Kunwar, A., Namazi, A., Chowdhury, D., Nishinari, K., Schadschneider, A.: Traffic on bi-directional ant-trails: Fundamental diagrams and coarsening behaviour. In: Kühne, R., Pöschel, T., Schadschneider, A., Schreckenberg, M., Wolf, D. (eds.) Proceedings of Traffic and Granular Flow 2005. Springer, Heidelberg (2005)Google Scholar
  25. 25.
    John, A., Kunwar, A., Namazi, A., Chowdhury, D., Nishinari, K., Schadschneider, A.: Traffic on bi-directional ant-trails. In: Gattermann, P., Waldau, N., Schreckenberg, M. (eds.) Proceedings of Pedestrian and Evacuation Dynamics 2005. Springer, Heidelberg (2005)Google Scholar
  26. 26.
    Schütz, G.M.: Exactly solvable models for many-body systems far from equilibrium. In: Domb, C., Lebowitz, J. (eds.) Phase Transitions and Critical Phenomena, vol. 19. Academic Press, London (2000)Google Scholar
  27. 27.
    Krug, J., Ferrari, P.: Phase transitions in driven diffusive systems with random rates. J. Phys. A 29, L465 (1996)CrossRefGoogle Scholar
  28. 28.
    John, A., Schadschneider, A., Chowdhury, D., Nishinari, K.: Collective effects in traffic on bi-directional ant-trails. J. Theor. Biol. 231, 279 (2004)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Kunwar, A., Chowdhury, D., Schadschneider, A., Nishinari, K.: Competition of coarsening and shredding of clusters in a driven diffusive lattice gas. J. Stat. Mech. (to appear, 2006)Google Scholar
  30. 30.
    Tripathy, G., Barma, M.: Steady state and dynamics of driven diffusive systems with quenched disorder. Phys. Rev. Lett. 78, 3039 (1997)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander John
    • 1
  • Andreas Schadschneider
    • 1
  • Debashish Chowdhury
    • 2
  • Katsuhiro Nishinari
    • 3
  1. 1.Institut für Theoretische PhysikUniversität zu KölnGermany
  2. 2.Department of PhysicsIndian Institute of TechnologyKanpurIndia
  3. 3.Department of Aeronautics and Astronautics, Faculty of EngineeringUniversity of TokyoJapan

Personalised recommendations