Advertisement

Parallel Ant Colony Optimization for the Traveling Salesman Problem

  • Max Manfrin
  • Mauro Birattari
  • Thomas Stützle
  • Marco Dorigo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4150)

Abstract

There are two reasons for parallelizing a metaheuristic if one is interested in performance: (i) given a fixed time to search, the aim is to increase the quality of the solutions found in that time; (ii) given a fixed solution quality, the aim is to reduce the time needed to find a solution not worse than that quality. In this article, we study the impact of communication when we parallelize a high-performing ant colony optimization (ACO) algorithm for the traveling salesman problem using message passing libraries. In particular, we examine synchronous and asynchronous communications on different interconnection topologies. We find that the simplest way of parallelizing the ACO algorithms, based on parallel independent runs, is surprisingly effective; we give some reasons as to why this is the case.

Keywords

Parallel Algorithm Travel Salesman Problem Travel Salesman Problem Message Passing Interface Parallel Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alba, E. (ed.): Parallel Metaheuristics: A New Class of Algorithms. Wiley Series on Parallel and Distributed Computing. Wiley-Interscience, Hoboken, NJ (2005)MATHGoogle Scholar
  2. 2.
    Tanese, R.: Parallel genetic algorithms for a hypercube. In: Proceedings of the second international conference on Genetic Algorithms and their Applications, Hillsdale, NJ, Lawrence Erlbaum Associates, Inc., pp. 177–183 (1987)Google Scholar
  3. 3.
    Bullnheimer, B., Kotsis, G., Strauß, C.: Parallelization strategies for the Ant System. In: De Leone, R., et al. (eds.) High Performance Algorithms and Software in Non-linear Optimization, pp. 87–100. Kluwer Academic Publishers, Norwell, MA (1998)Google Scholar
  4. 4.
    Middendorf, M., Reischle, F., Schmeck, H.: Multi colony ant algorithms. Journal of Heuristics 8(3), 305–320 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Piriyakumar, D.A.L., Levi, P.: A new approach to exploiting parallelism in ant colony optimization. In: International Symposium on Micromechatronics and Human Science (MHS) 2002, Nagoya, Japan. Proceedings, IEEE Standard Office, pp. 237–243 (2002)Google Scholar
  6. 6.
    Benkner, S., Doerner, K.F., Hartl, R.F., Kiechle, G., Lucka, M.: Communication strategies for parallel cooperative ant colony optimization on clusters and grids. In: Complimentary Proceedings of PARA 2004 Workshop on State-of-the-Art in Scientific Computing, June 20-23, 2004, Lyngby, Denmark, pp. 3–12 (2005)Google Scholar
  7. 7.
    Garey, M.R., Johnson, D.S.: Computers and Intractability / A Guide to the Theory of \({\cal NP}\)-Completeness. W.H. Freeman & Company, San Francisco, CA (1979)Google Scholar
  8. 8.
    Stützle, T., Hoos, H.H.: \(\cal MAX\)\(\cal MIN\) Ant System. Future Generation Computer System 16(8), 889–914 (2000)CrossRefGoogle Scholar
  9. 9.
    Stützle, T.: Parallelization strategies for ant colony optimization. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 722–731. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report 91-016, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1991)Google Scholar
  11. 11.
    Dorigo, M.: Ottimizzazione, apprendimento automatico, ed algoritmi basati su metafora naturale. PhD thesis, Dipartimento di Elettronica, Politecnico di Milano, Milan, Italy (1992)Google Scholar
  12. 12.
    Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  13. 13.
    Zlochin, M., Birattari, M., Meuleau, N., Dorigo, M.: Model-based search for combinatorial optimization: A critical survey. Annals of Operations Research 131, 373–395 (2004)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Grama, A., Gupta, A., Karypis, G., Kumar, V.: Introduction to parallel computing, 2nd edn. Pearson - Addison Wesley, Harlow (2003)Google Scholar
  15. 15.
  16. 16.
    Conover, W.J.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)Google Scholar
  17. 17.
    Holm, S.: A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65–70 (1979)MATHMathSciNetGoogle Scholar
  18. 18.
    Hoos, H., Stützle, T.: Stochastic Local Search: Foundations & Applications. Morgan Kaufmann Publishers Inc, San Francisco (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Max Manfrin
    • 1
  • Mauro Birattari
    • 1
  • Thomas Stützle
    • 1
  • Marco Dorigo
    • 1
  1. 1.IRIDIA, CoDEUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations