A Generic Import Framework for Process Event Logs

Industrial Paper
  • Christian W. Günther
  • Wil M. P. van der Aalst
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4103)


The application of process mining techniques to real-life corporate environments has been of an ad-hoc nature so far, focused on proving the concept. One major reason for this rather slow adoption has been the complicated task of transforming real-life event log data to the MXML format used by advanced process mining tools, such as ProM. In this paper, the ProM Import Framework is presented, which has been designed to bridge this gap and to build a stable foundation for the extraction of event log data from any given PAIS implementation. Its flexible and extensible architecture, adherence to open standards, and open source availability make it a versatile contribution to the general BPI community.


Business Process Process Mining Process Instance Enterprise Resource Planning Child Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    van der Aalst, W.M.P., van Hee, K.M.: Workflow Management: Models, Methods, and Systems. MIT Press, Cambridge (2002)Google Scholar
  2. 2.
    van der Aalst, W.M.P., Song, M.: Mining Social Networks: Uncovering Interaction Patterns in Business Processes. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol. 3080, pp. 244–260. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering 47(2), 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Discovering Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)CrossRefGoogle Scholar
  5. 5.
    van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A New Paradigm for Business Process Support. Data and Knowledge Engineering 53(2), 129–162 (2005)CrossRefGoogle Scholar
  6. 6.
    Agrawal, R., Gunopulos, D., Leymann, F.: Mining Process Models from Workflow Logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Athena, P.: Case Handling with FLOWer: Beyond workflow. Pallas Athena B.V., Apeldoorn, The Netherlands (2002)Google Scholar
  8. 8.
    Cook, J.E., Wolf, A.L.: Discovering Models of Software Processes from Event-Based Data. ACM Transactions on Software Engineering and Methodology 7(3), 215–249 (1998)CrossRefGoogle Scholar
  9. 9.
    van Dongen, B.F., van der Aalst, W.M.P.: Multi-Phase Process Mining: Building Instance Graphs. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.) ER 2004. LNCS, vol. 3288, pp. 362–376. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  10. 10.
    van Dongen, B.F., de Medeiros, A.K., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The prom framework: A new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Grigori, D., Casati, F., Castellanos, M., Dayal, U., Sayal, M., Shan, M.C.: Business process intelligence. Computers in Industry 53(3), 321–343 (2004)CrossRefGoogle Scholar
  12. 12.
    Herbst, J., Karagiannis, D.: An Inductive Approach to the Acquisition and Adaptation of Workflow Models. In: Ibrahim, M., Drabble, B. (eds.) Proceedings of the IJCAI 1999 Workshop on Intelligent Workflow and Process Management: The New Frontier for AI in Business, Stockholm, Sweden, August 1999, pp. 52–57 (1999)Google Scholar
  13. 13.
    Hoare, C.A.R.: Algorithm 64: Quicksort. Commun. ACM 4(7), 321 (1961)CrossRefGoogle Scholar
  14. 14.
    Keller, G., Nüttgens, M., Scheer, A.W.: Semantische Processmodellierung auf der Grundlage Ereignisgesteuerter Processketten (EPK). Veröffentlichungen des Instituts für Wirtschaftsinformatik, Heft 89 (in German), University of Saarland, Saarbrücken (1992)Google Scholar
  15. 15.
    Knuth, D.E.: The Art of Computer Programming, 2nd edn. Sorting and Searching, vol. 3. Addison Wesley, Reading (1998)Google Scholar
  16. 16.
    Reichert, M., Dadam, P.: ADEPTflex: Supporting Dynamic Changes of Workflow without Loosing Control. Journal of Intelligent Information Systems 10(2), 93–129 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Christian W. Günther
    • 1
  • Wil M. P. van der Aalst
    • 1
  1. 1.Department of Technology ManagementEindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations