Integrating Web Resources to Model Protein Structure and Function

  • Ludwig Krippahl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4126)


In this paper we address computational aspects of protein structure and function, including prediction of secondary structure, folding, structure determination from Nuclear Magnetic Resonance data, modelling of protein interactions, and metabolic pathways. The subject is introduced with an overview of protein structure and chemistry and the algorithms and representations used to model protein structures. The main focus of the paper is the integration of information from sources relevant to protein structure modelling, such as structure databases and modelling servers, a task made difficult by the heterogeneity of formats, the diversity of data sources, and the sheer volume of information available, making evident the need for a standard framework for data sharing, i.e. the Semantic Web. To help solve this problem, we present tools being developed according to the concept of a Semantic Web. These include the UniProtRDF project and tools currently implemented on the Chemera molecular modelling software which can facilitate the search and application of information available from Internet servers and databases.


Protein Data Bank Protein Chain Simple Object Access Protocol Nucleic Acid Research Model Protein Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Darby, N.J., Creighton, T.E.: Protein Structure: In Focus. Oxford University Press, Oxford (1993)Google Scholar
  2. 2.
    Branden, C., Tooze, J.: Introduction to Protein Structure, 2nd edn., Garland (1999)Google Scholar
  3. 3.
  4. 4.
    Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: J. Mol. Biol. 215, 403–410 (1990)Google Scholar
  5. 5.
    Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale, D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.: The Universal Protein Resource (UniProt). Nucleic Acids Res. 33, D154–D159 (2005)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Gene Ontology Consortium (2006). The Gene Ontology (GO) project in 2006. Nucleic Acids Research 34, D322–D326 (2006)Google Scholar
  8. 8.
    Simons, K.T., Kooperberg, C., Huang, E., Baker, D.: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268(1), 209–25 (1997)CrossRefGoogle Scholar
  9. 9.
    Krippahl, L., Barahona, P.: Propagating N-ary Rigid-Body Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 452–465. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Krippahl, L., Barahona, P.: PSICO: Solving Protein Structures with Constraint Programming and Optimisation. Constraints 7, 317–331 (2002)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Krippahl, L., Barahona, P.: Applying Constraint Programming to Rigid Body Protein Docking, Lecture Notes in Computer Science CP 2005. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 373–387. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Krippahl, L., Moura, J.J., Palma, P.N.: Modeling Protein Complexes with BiGGER. Proteins 52(1), 19–23 (2003)CrossRefGoogle Scholar
  13. 13.
    Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of Docking: An Overview of Search Algorithms and a Guide to Scoring Functions. PROTEINS: Structure, Function, and Genetics 47, 409–443 (2002)CrossRefGoogle Scholar
  14. 14.
    Lattman, E.E.: Protein-structure prediction – a special issue. Proteins: Struct., Funct., Genet. 23, 1 (1995)CrossRefGoogle Scholar
  15. 15.
    Bonneau, R., Strauss, C., Rohl, C., Chivian, D., Bradley, P., Malmstrom, L., Robertson, T., Baker, D.: De Novo Prediction of Three-dimensional Structures for Major Protein Families. J. Mol. Biol. 322(1), 65 (2002)CrossRefGoogle Scholar
  16. 16.
    Schwede, T., Kopp, J., Guex, N., Peitsch, M.C.: SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research 31, 3381–3385 (2003)CrossRefGoogle Scholar
  17. 17.
    Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18, 2714–2723 (1997)CrossRefGoogle Scholar
  18. 18.
    Peitsch, M.C.: Protein modeling by E-mail Bio/Technology, vol.13, pp. 658–660 (1995)Google Scholar
  19. 19.
  20. 20.
    Guex, N., Peitsch, M.C.: SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling. Electrophoresis 18, 2714–2723 (1997)CrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
    Labarga, A., et al.: Web services at EBI EMBnet. news 11(4), 18–23 (2005)Google Scholar
  24. 24.
    Pillai, S., Silventoinen, V., Kallio, K., Senger, M., Sobhany, S., Tate, J., Velankar, S., Golovin, A., Henrick, K., Rice, P., Stoehr, P., Lopez, R.: SOAP-based services provided by the European Bioinformatics Institute. Nucleic Acids Res. 33(1), W25–W28 (2005)CrossRefGoogle Scholar
  25. 25.
    Raghava, G.P.S.: APSSP2: A combination method for protein secondary structure prediction based on neural network and example based learning. CASP5. A-132 (2002)Google Scholar
  26. 26.
    Rost, B., Sander, C.: J. of Molecular Biology 232, 584–599 (1993)Google Scholar
  27. 27.
    Rost, B.: PROF: Predicting one-dimensional protein structure by profile based neural networks (unpublished, 2000)Google Scholar
  28. 28.
    Rost, B., Yachdav, G., Liu, J.: The Predict Protein Server. Nucleic Acids Research (Web Server issue) 32, W321–W326 (2003)CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Research 28, 235–242 (2000)CrossRefGoogle Scholar
  31. 31.
    Orengo, C.A., Michie, A.D., Jones, S., Jones, D.T., Swindells, M.B., Thornton, J.M.: CATH- A Hierarchic Classification of Protein Domain Structures. Structure 5(8), 1093–1108 (1997)CrossRefGoogle Scholar
  32. 32.
    Pearl, F.M.G., Lee, D., Bray, J.E., Sillitoe, I., Todd, A.E., Harrison, A.P., Thornton, J.M., Orengo, C.A.: Assigning genomic sequences to CATH Nucleic Acids Research  28(1), 277–282 (2000)Google Scholar
  33. 33.
  34. 34.
    Murzin, A.G., Brenner, S.E., Hubbard, T., Chothia, C.: SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247, 536–540 (1995)Google Scholar
  35. 35.
  36. 36.
    Bateman, A., Coin, L., Durbin, R., Finn, R., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E., Studholme, D., Yeats, C., Eddy, S.: The Pfam Protein Families Database. Nucleic Acids Research Database Issue 32, D138–D141 (2004)CrossRefGoogle Scholar
  37. 37.
    Sonnhammer, E.L.L., Eddy, S.R., Birney, E., Bateman, A., Durbin, R.: Pfam: Multiple sequence alignments and HMM-profiles of protein domains. Nucleic Acids Research 26, 320–322 (1998)CrossRefGoogle Scholar
  38. 38.
  39. 39.
    Finn, R.D., Marshall, M., Bateman, A.: iPfam: visualization of protein-protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21, 410–412 (2005)CrossRefGoogle Scholar
  40. 40.
  41. 41.
  42. 42.
  43. 43.
  44. 44.
    Berger, S., Bry, F., Bolzer, O., Furche, T., Schaffert, S., Wieser, C.: Xcerpt and visXcerpt: Twin Query Languages for the Semantic Web. In: Proc. Int. Semantic Web Conf. (2004)Google Scholar
  45. 45.
    Pătrânjan, P.L.: The Language XChange: A Declarative Approach to Reactivity on the Web. PhD Thesis, Institute for Informatics, University of Munich (July 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ludwig Krippahl
    • 1
  1. 1.Dep. de InformáticaUniversidade Nova de LisboaMonte de CaparicaPortugal

Personalised recommendations