Advertisement

Integrating Ontologies and Rules: Semantic and Computational Issues

  • Riccardo Rosati
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4126)

Abstract

We present some recent results on the definition of logic-based systems integrating ontologies and rules. In particular, we take into account ontologies expressed in Description Logics and rules expressed in Datalog (and its nonmonotonic extensions). We first introduce the main issues that arise in the integration of ontologies and rules. In particular, we focus on the following aspects: (i) from the semantic viewpoint, ontologies are based on open-world semantics, while rules are typically interpreted under closed-world semantics. This semantic discrepancy constitutes an important obstacle for the definition of a meaningful combination of ontologies and rules; (ii) from the reasoning viewpoint, the interaction between an ontology and a rule component is very hard to handle, and does not preserve decidability and computational properties: e.g., starting from an ontology in which reasoning is decidable and a rule base in which reasoning is decidable, reasoning in the formal system obtained by integrating the two components may not be a decidable problem. Then, we briefly survey the main approaches for the integration of ontologies and rules, with special emphasis on how they deal with the above mentioned issues, and present in detail one of such approaches, i.e., \({{\cal DL}\textit{+log}}\). Finally, we illustrate the main open problems in this research area, pointing out what still prevents us from the development of both effective and expressive systems able to integrate ontologies and rules.

Keywords

Description Logic Conjunctive Query Query Answering Closed World Assumption Datalog Program 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rule interchange format working group charter, http://www.w3.org/2005/rules/wg/charter
  2. 2.
    Antoniou, G.: A nonmonotonic rule system using ontologies. In: Proc. of the First International Workshop on Rules and Rule Markup Languages for the Semantic Web (RuleML 2002). CEUR Workshop Proceedings, vol. 60 (2002)Google Scholar
  3. 3.
    Antoniou, G.: Nonmonotonic rule systems on top of ontology layers. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342, pp. 394–398. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Antoniou, G., Bikakis, A., Wagner, G.: A system for nonmonotonic rules on the web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 23–36. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Antoniou, G., Damásio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J., Patel-Schneider, P.F.: Combining rules and ontologies: A survey. REWERSE Deliverable, http://rewerse.net/publications#REWERSE-DEL-2005-I3-D3
  6. 6.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  7. 7.
    Baral, C., Gelfond, M.: Logic programming and knowledge representation. J. of Logic Programming 19–20, 73–148 (1994)Google Scholar
  8. 8.
    Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proc. of the 20th Nat. Conf. on Artificial Intelligence (AAAI 2005), pp. 602–607 (2005)Google Scholar
  9. 9.
    Calvanese, D., De Giacomo, G., Lenzerini, M.: On the decidability of query containment under constraints. In: Proc. of the 17th ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems (PODS 1998), pp. 149–158 (1998)Google Scholar
  10. 10.
    Calvanese, D., Rosati, R.: Answering recursive queries under keys and foreign keys is undecidable. In: Proc. of the 10th Int. Workshop on Knowledge Representation meets Databases (KRDB 2003). CEUR Electronic Workshop Proceedings (2003), http://ceur-ws.org/Vol-79/
  11. 11.
    Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Computing Surveys 33(3), 374–425 (2001)CrossRefGoogle Scholar
  12. 12.
    de Bruijn, J., Lara, R., Polleres, A., Fensel, D.: OWL DL vs. OWL flight: conceptual modeling and reasoning for the semantic web. In: Proc. of the 14th international conference on World Wide Web (WWW 2005), pp. 623–632 (2005)Google Scholar
  13. 13.
    Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: \({\cal AL}\)-log: Integrating Datalog and description logics. J. of Intelligent Information Systems 10(3), 227–252 (1998)CrossRefGoogle Scholar
  14. 14.
    Eiter, T., Gottlob, G., Mannilla, H.: Disjunctive Datalog. ACM Trans. on Database Systems 22(3), 364–418 (1997)CrossRefGoogle Scholar
  15. 15.
    Eiter, T., Ianni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning Web 2006. LNCS, vol. 4126. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The KR system dlv: Progress report, comparison and benchmarks. In: Proc. of the 6th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 1998), pp. 636–647 (1998)Google Scholar
  17. 17.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set programming with description logics for the semantic web. In: Proc. of the 9th Int. Conf. on Principles of Knowledge Representation and Reasoning (KR 2004), pp. 141–151 (2004)Google Scholar
  18. 18.
    Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Well-founded semantics for description logic programs in the semantic web. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 81–97. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 365–385 (1991)CrossRefGoogle Scholar
  20. 20.
    Glimm, B., Horrocks, I., Sattler, U.: Conjunctive query answering for description logics with transitive roles. In: Proc. of the 2006 Description Logic Workshop (DL 2006) (2006)Google Scholar
  21. 21.
    Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Combining logic programs with description logic. In: Proc. of the 12th Int. World Wide Web Conf (WWW 2003), pp. 48–57 (2003)Google Scholar
  22. 22.
    Heymans, S., Van Nieuwenborgh, D., Vermeir, D.: Semantic web reasoning with conceptual logic programs. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 113–127. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Heymans, S., Vermeir, D.: Integrating description logics and answer set programming. In: Bry, F., Henze, N., Małuszyński, J. (eds.) PPSWR 2003. LNCS, vol. 2901, pp. 146–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  24. 24.
    Horrocks, I., Patel-Schneider, P.F.: A proposal for an OWL rules language. In: Proc. of the 13th international conference on World Wide Web (WWW 2004), pp. 723–731 (2004)Google Scholar
  25. 25.
    Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms. Artificial Intelligence 160(1–2), 79–104 (2004)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Levy, A.Y., Rousset, M.-C.: CARIN: A representation language combining Horn rules and description logics. In: Proc. of the 12th Eur. Conf. on Artificial Intelligence (ECAI 1996), pp. 323–327 (1996)Google Scholar
  27. 27.
    Levy, A.Y., Rousset, M.-C.: The limits on combining recursive Horn rules with description logics. In: Proc. of the 13th Nat. Conf. on Artificial Intelligence (AAAI 1996), pp. 577–584 (1996)Google Scholar
  28. 28.
    Levy, A.Y., Rousset, M.-C.: Combining Horn rules and description logics in CARIN. Artificial Intelligence 104(1–2), 165–209 (1998)CrossRefMathSciNetMATHGoogle Scholar
  29. 29.
    Mei, J., Liu, S., Yue, A., Lin, Z.: An extension to OWL with general rules. In: Antoniou, G., Boley, H. (eds.) RuleML 2004. LNCS, vol. 3323, pp. 155–169. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 549–563. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  31. 31.
    Motik, B., Sattler, U., Studer, R.: Query answering for OWL-DL with rules. Web Semantics 3(1), 41–60 (2005)Google Scholar
  32. 32.
    Ortiz, M.M., Calvanese, D., Eiter, T.: Characterizing data complexity for conjunctive query answering in expressive description logics. In: Proc. of the 21th Nat. Conf. on Artificial Intelligence (AAAI 2006) (2006)Google Scholar
  33. 33.
    Patel-Schneider, P.F., Hayes, P.J., Horrocks, I., van Harmelen, F.: OWL web ontology language; semantics and abstract syntax. W3C candidate recommendation (November 2002), http://www.w3.org/tr/owl-semantics/
  34. 34.
    Reiter, R.: A logic for default reasoning. Artificial Intelligence 13, 81–132 (1980)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Rosati, R.: Towards expressive KR systems integrating Datalog and description logics: Preliminary report. In: Proc. of the 1999 Description Logic Workshop (DL 1999). CEUR Electronic Workshop Proceedings, pp. 160–164 (1999), http://ceur-ws.org/Vol-22/
  36. 36.
    Rosati, R.: On the decidability and complexity of integrating ontologies and rules. Web Semantics 3(1), 61–73 (2005)Google Scholar
  37. 37.
    Rosati, R.: Semantic and computational advantages of the safe integration of ontologies and rules. In: Fages, F., Soliman, S. (eds.) PPSWR 2005. LNCS, vol. 3703, pp. 50–64. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  38. 38.
    Rosati, R.: \({\cal DL}\)+log: Tight integration of description logics and disjunctive datalog. In: Proc. of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006) (to appear, 2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Riccardo Rosati
    • 1
  1. 1.Dipartimento di Informatica e SistemisticaUniversità di Roma “La Sapienza”RomaItaly

Personalised recommendations