Advertisement

Automatic Composition of Semantic Web Services – A Theorem Proof Approach

  • Li Ye
  • Junliang Chen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4185)

Abstract

This paper proposes a method to automatically generate composite services. The function of a service is specified by its Inputs, Output, Preconditions, and Result (IOPR). These functional descriptions are translated into a first-order logic (FOL) formula. An Automatic Theorem Prover (ATP) is used to generate a proof from known services (as axioms) to the composite service (as an object formula). Based on the deductive program synthesis theory, the implementation of the composite service is extracted from the proof. The “proof to program” method used here guarantees the completeness and correctness of the result. An brief introduction of the prototype system is given.

Keywords

Semantic Web Services Automatic Service Composition Automatic Theorem Proof Deductive Program Synthesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Antoniou, G., Harmelen, F.v.: A Semantic Web Primer. The MIT Press, Cambridge (2004)Google Scholar
  2. 2.
    Lassila, O., Swick, R.R.: Resource Description Framework(RDF) model and syntax specification, W3C recommendation (February 1999), On-line: http://www.w3.org/TR/1999/REC_rdf-syntax-19990222/
  3. 3.
    Dean, M., et al.: OWL Web Ontology Language 1.0 reference, W3C recommendation (July 2002),On-line, http://www.w3.org/TR/owl-ref/
  4. 4.
    Box, D., et al.: Simple Object Access Protocol (SOAP) 1.1, W3C recommendation (2001),On-line, http://www.w3.org/TR/SOAP/
  5. 5.
    McIlraith, S.A., Son, T.C., Zeng, H.: Semantic Web Services. IEEE Intelligent Systems 16, 46–53 (2001)Google Scholar
  6. 6.
    Rao, J.: Semantic Web Service Composition via Logic-based Program Synthesis. PhD thesis, Norwegian University of Science and Technology (2004)Google Scholar
  7. 7.
    Girard, J.-Y.: Linear Logic. Theoretical Computer Science 50, 1–102 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes. Computer Science Department, University of Edinburgh (June 1989)Google Scholar
  9. 9.
    McIlraith, S., Son, T.C.: Adapting Golog for composition of Semantic Web services. In: Proceedings of the 8th International Conference on Knowledge Representation and Reasoning(KR 2002) (April 2002)Google Scholar
  10. 10.
    Manna, Z., Waldinger, R.: Fundamentals of deductive program synthesis. IEEE Transactions on Software Engineering 18, 674–704 (1992)CrossRefGoogle Scholar
  11. 11.
    Otter: An Automated Deduction System. On-line, http://www-unix.mcs.anl.gov/AR/otter/
  12. 12.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2002)Google Scholar
  13. 13.
    Bibel, W., Schmitt, P.: Automated Deduction: a Basis for Applications, vol. 810. Kluwer, DordrechtGoogle Scholar
  14. 14.
    Bundy, A., Harmelen, F.V., Horn, C., Smaill, A.: The Oyster-Clam System. In: Stickel, M.E. (ed.) CADE 1990. LNCS (LNAI), vol. 449, pp. 647–648. Springer, Heidelberg (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Li Ye
    • 1
  • Junliang Chen
    • 1
  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations