Ontology-Based Similarity Between Text Documents on Manifold

  • Guihua Wen
  • Lijun Jiang
  • Nigel R. Shadbolt
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4185)


This paper firstly utilizes the ontology such as WordNet to build the semantic structures of text documents, and then enhance the semantic similarity among them. Because the correlations between documents make them lie on or close to a smooth low-dimensional manifold so that documents can be well characterized by a manifold within the space of documents, we calculate the similarity between any two semantically structured documents with respect to the intrinsic global manifold structure. This idea has been validated in the conducted text categorization experiments on patent documents.


Semantic Similarity Text Categorization Geodesic Distance Semantic Structure Patent Document 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Computing Surveys 34, 1–47 (2002)CrossRefMathSciNetGoogle Scholar
  2. 2.
    He, J., Tan, A.H., Tan, C.L.: On Machine Learning Methods for Chinese Document Categorization. Applied Intelligence 18, 613–617 (2003)CrossRefGoogle Scholar
  3. 3.
    Bell, D.A., Guan, J.W., Bi, Y.: On Combining Classifier Mass Functions for Text Categorization. IEEE Transactions on Knowledge and Data Engineering 17, 1307–1319 (2005)CrossRefGoogle Scholar
  4. 4.
    Aggarwal, C.C., Gates, S.C., Yu, P.S.: On Using Partial Supervision for Text Categorization. IEEE Transactions on Knowledge and Data Engineering 16, 245–255 (2004)CrossRefGoogle Scholar
  5. 5.
    Lam, W., Han, Y.Q.: Automatic textual document categorization based on generalized instance sets and a matamodel. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 628–633 (2003)CrossRefGoogle Scholar
  6. 6.
    Sun, A., Lim, E.P., Ng, W.K., Srivastava, A.: Blocking Reduction Strategies in Hierarchical Text Classification. IEEE Transactions on Knowledge and Data Engineering 16, 1305–1308 (2004)CrossRefGoogle Scholar
  7. 7.
    Roweis, S.T., Saul, L.K.: Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)CrossRefGoogle Scholar
  8. 8.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290, 2319–2323 (2000)CrossRefGoogle Scholar
  9. 9.
    de Ridder, D., Kouropteva, O., Okun, O., et al.: Supervised locally linear embedding. LNCS (LNAI), vol. 2714, pp. 333–341 (2003)Google Scholar
  10. 10.
    Geng, X., Zhan, D.C., Zhou, Z.H.: Supervised Nonlinear Dimensionality Reduction for Visualization and Classification. IEEE Transactions on Systems, Man and Cybernetics 35, 1098–1107 (2005)CrossRefGoogle Scholar
  11. 11.
    Zhang, D., Chen, X., Lee, W.: Categorization and supervised machine learning: Text classification with kernels on the multinomial manifold. In: Proceedings of the 28th annual international ACM SIGIR conference on Research and development in information retrieval SIGIR 2005, Brazil, pp. 266–273 (2005)Google Scholar
  12. 12.
    Wen, G.H.: Rotating dynamics for computational creativity. National Defence Industry Press book, Beijing (2005)Google Scholar
  13. 13.
    Ganesan, P., Molina, H.G., Widom, J.: Exploiting hierarchical domain structure to compute similarity. ACM Transactions on Information Systems 21, 64–93 (2003)CrossRefGoogle Scholar
  14. 14.
    Yuan, S.T., Sun, J.: Ontology-Based Structured Cosine Similarity in Document Summarization: With Applications to Mobile Audio-Based Knowledge Management. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 35, 1028–1040 (2005)CrossRefGoogle Scholar
  15. 15.
    Oleshchuk, V., Pedersen, A.: Ontology Based Semantic Similarity Comparison of Documents. In: 14th International Workshop on Database and Expert Systems Applications, p. 735 (2003)Google Scholar
  16. 16.
    Rodriguez, M.A., Egenhofer, M.J.: Determining semantic similarity among entity classes from different ontologies. IEEE Transactions on Knowledge and Data Engineering 15, 442–456 (2003)CrossRefGoogle Scholar
  17. 17.
    Li, Y., Bandar, Z.A., Mclean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15, 871–882 (2003)CrossRefGoogle Scholar
  18. 18.
    Navigli, R., Velardi, P., Gangemi, A.: Ontology learning and its application to automated terminology translation. IEEE Intelligent Systems 18, 22–31 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Guihua Wen
    • 1
  • Lijun Jiang
    • 1
  • Nigel R. Shadbolt
    • 2
  1. 1.School of Computer Science and EngineeringSouth China University of TechnologyGuangzhouChina
  2. 2.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUnited Kingdom

Personalised recommendations