Advertisement

ECGSC: Elliptic Curve Based Generalized Signcryption

  • Yiliang Han
  • Xiaoyuan Yang
  • Ping Wei
  • Yuming Wang
  • Yupu Hu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4159)

Abstract

Signcryption is a new cryptographic primitive that simultaneously fulfills both the functions of signature and encryption. The definition of Generalized Signcryption is proposed in the paper firstly. Generalized signcryption has a special feature that provides confidentiality or authenticity separately under the condition of specific inputs. Based on ECDSA, a signcryption scheme called ECGSC is designed. It will be equivalent to an AtE(OTP $, MAC) encryption scheme or ECDSA when one of party is absent. A third party can verify the signcryption text publicly in the method of ECDSA. Security properties are proven based on Random Oracle mode: confidentiality (CUF-CPA), unforgeability (UF-CMA) and non-repudiation. Compared with the others, ECGSC presents a 78% reduction in computational cost for typical security parameters for high level security applications.

Keywords

Hash Function Elliptic Curve Encryption Scheme Signature Scheme Block Cipher 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krawczyk, H.: The order of encryption and authentication for protecting communications (or: How secure is SSL?). In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 310–331. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Zheng, Y.: Digital Signcryption or How to Achieve Cost (Signature & Encryption) << Cost(Signature) + Cost(Encryption). In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 165–179. Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Bao, F., Deng, R.H.: A signcryption scheme with signature directly verifiable by public key. In: Imai, H., Zheng, Y. (eds.) PKC 1998. LNCS, vol. 1431, pp. 55–59. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Yum, D.H., Lee, P.J.: New Signcryption Schemes based on KCDSA. In: Proceedings of the 4th International Conference on Information Security and Cryptology, Seoul, South Korea, pp. 305–317 (2002)Google Scholar
  5. 5.
    Shin, J.B., Lee, K., Shim, K.: New DSA-Verifiable Signcryption Schemes. In: Proceedings of the 5th International Conference on Information Security and Cryptology, Seoul, South Korea, pp. 35–47 (2003)Google Scholar
  6. 6.
    Malone-Lee, J., Mao, W.: Two birds one stone: Signcryption using RSA. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 210–224. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. 7.
    Zheng, Y., Imai, H.: How to construct efficient signcryption schemes on elliptic curves. Information Processing Letters 68(5), 227–233 (1998)CrossRefMathSciNetGoogle Scholar
  8. 8.
    An, J.H., Dodis, Y., Rabin, T.: On the security of joint signature and encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 83–107. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. 9.
    Dodis, Y., Rreedman, M., Jarecki, S., Jarecki, S., Walfish, S.: Versatile padding schemes for joint signature and encryption. In: Pfitzmann, B. (ed.) Proceedings of 11th ACM Conference on Computer and Communication Security (CCS 2004), Washingtion DC, USA, pp. 196–205 (2004)Google Scholar
  10. 10.
    Dent, A.W.: Hybrid Signcryption Schemes With Insider Security. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 253–266. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Bellare, M., Rogaway, P.: Random oracle are practical: a paradigm for designing efficient protocols. In: Proceeding of the First ACM Conference on Computer and Communication Security (CCS 1993), Fairfax, Virginia, USA, pp. 62–73 (1993)Google Scholar
  12. 12.
    Brown, D.: Generic Groups, Collision Resistance, and ECDSA. Design, Codes Cryptography 35(1), 119–152 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Stern, J., Pointcheval, D., Malone-Lee, J., Smart Nigel, P.: Flaws in Applying Proof Methodologies to Signature Schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Baek, J., Steinfeld, R., Zheng, Y.: Formal Proofs for the Security of Signcryption. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 80–98. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Koblitz, N., Menezes, A., Vanstone, S.: The state of elliptic curve cryptography. Designs, Codes and Cryptography 30(19), 173–193 (2000)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yiliang Han
    • 1
    • 2
  • Xiaoyuan Yang
    • 1
  • Ping Wei
    • 1
  • Yuming Wang
    • 2
  • Yupu Hu
    • 2
  1. 1.Key Lab. of Computer Networks and Information SecurityEngineering College of Armed Police ForceXi’anChina
  2. 2.College of Communication EngineeringXidian UniversityXi’anChina

Personalised recommendations