A Smart Identification Card System Using Facial Biometric: From Architecture to Application

  • Kun Peng
  • Liming Chen
  • Su Ruan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4159)


This paper presents a smart identification card system using facial biometric information for identity authentification. For a trade-off between the security and the cost, this system utilizes an architecture containing three security levels of identity authentification, “manual face verification offline”, “manual face verification online” and “automatic (biometric) face verification”, which satisfy the different security requirements of various applications of identification cards. For the function of “manual face verification online”, we bring out an idea based on decomposing the face image into two parts which are stocked into the card and the database of system respectively. And for the function of “automatic face verification”, we proposed a novel face verification scheme based on class-specific face models. The technique Active Appearance Model is applied, as the way of face modelling, to realize the proposed scheme. A prototype application of such system, which contains a fix version for PC and a mobile version for Pocket PC, is also introduced in this paper.


Face Recognition Face Image Smart Card Face Model False Acceptance Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lu, X.: Image Analysis for Face Recognition, personal notes (2003)Google Scholar
  2. 2.
    Turk, M.A., Pentland, A.P.: Eigenfaces for Recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    Hyvarinen, A.: Survey On Independent Component Analysis. Neural Computing Surveys 2, 94–128 (1999)Google Scholar
  4. 4.
    Etemad, K., Chellappa, R.: Discriminant Analysis for Recognition of Human Face Images. Journal of the Optical Society of America A 14(8), 1724–1733 (1997)CrossRefGoogle Scholar
  5. 5.
    Scholkopf, B., Smola, A., Muller, K.: Nonlinaer Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  6. 6.
    Kanade, T.: Picture Processing System by Computer and Recognition of Human Faces, PhD. Thesis, Kyoto University (1973)Google Scholar
  7. 7.
    Wiskott, L., Fellous, J.M., Kruger, N., Malsburg, C.V.D.: Face Recogniton by Elastic Bunch Graph Matching. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI) 19(7), 775–779 (1997)CrossRefGoogle Scholar
  8. 8.
    Lades, M., Vorbruggen, J.C., Buhmann, J., Lange, J., Malsburg, C.V.D., Wurtz, R.P., Konen, W.: Distortion Invariant Object Recognition In the Dynamic Link Architecture. IEEE Transations on Computers 42(3), 300–311 (1993)CrossRefGoogle Scholar
  9. 9.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active Appearance Models. In: Proc. of European Conference on Computer Vision, vol. 2, pp. 484–498 (1998)Google Scholar
  10. 10.
    Blanz, V., Vetter, T.: A Morphable Model for the Synthesis of 3d Faces. In: Proc. of SIGGRAPH, pp. 187–194 (1999)Google Scholar
  11. 11.
    Chen, L., Peng, K., Liu, X.: Smart Identification Card, PCT/FR200400685, France (2004)Google Scholar
  12. 12.
    Peng, K., Chen, L., Ruan, S.: A Novel Scheme of Face Verification Using Active Appearance Models. In: Proc. of IEEE Conference on Advanced Video and Signal based Surveillance (AVSS 2005), pp. 247–252 (2005)Google Scholar
  13. 13.
    Peng, K., Chen, L., Ruan, S., Kukharev, G.: A Robust and Efficient Algorithm for Eye Detection On Gray Intensity Face. In: Singh, S., Singh, M., Apte, C., Perner, P. (eds.) ICAPR 2005. LNCS, vol. 3687, pp. 302–308. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Stegmann, M.B., Ersboll, B.K., Larsen, A.R.: Fame - a Flexible Appearance Modeling Environment. IEEE Transaction on Medical Imaging 22(10), 1319–1331 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kun Peng
    • 1
  • Liming Chen
    • 1
  • Su Ruan
    • 2
  1. 1.Laboratoire d’InfoRmatique en Images et Systems d’information (LIRIS), Département MIEcole centrale de LyonEcullyFrance
  2. 2.Equipe Image, CReSTIC, Département GE&IIIUT de TroyesTroyesFrance

Personalised recommendations