Information-Driven Sensor Selection Algorithm for Kalman Filtering in Sensor Networks

  • Yu Liu
  • Yumei Wang
  • Lin Zhang
  • Chan-hyun Youn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4159)


In this paper, an information-driven sensor selection algorithm is proposed to select sensors to participate in Kalman filtering for target state estimation in sensor networks. The mutual information between the measurements of sensors and the estimated distribution of the target state is considered as the information utility function to evaluate the information contribution of sensors. And only those sensors with larger mutual information are selected to participate in the Kalman filtering iterations. Then the geographic routing mechanism is utilized to visit these selected sensors sequentially and set up a path to transport the state estimation information to the sink node. Simulation results show that compared with the shortest path tree algorithm, the information-driven sensor selection algorithm involves smaller participated sensors, and shorter total communication distance, while the estimation performance approaches the same bound.


Sensor Network Mutual Information Wireless Sensor Network Sink Node Short Path Algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shah, R.C., Rabaey, J.M.: Energy aware routing for low energy ad hoc sensor networks. In: Proc. IEEE Wireless Commun. Netw. Conf., Orlando, FL, pp. 350–355 (2001)Google Scholar
  2. 2.
    Karp, B., Kung, H.T.: Greedy perimeter stateless routing for wireless networks. In: Proc. MobiCom, Boston, MA, pp. 243–254 (2000)Google Scholar
  3. 3.
    Ko, Y.-B., Vaidya, N.H.: Geocasting in mobile ad hoc networks: Location-based multicast algorithms. In: Proc. IEEE Workshop Mobile Comput. Syst. Appl., New Orleans, LA, pp. 101–110 (1999)Google Scholar
  4. 4.
    Intanagonwiwat, C., Govindan, R., Estrin, D., Heidemann, J., Silva, F.: Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on Networking 11(1), 2–16 (2003)CrossRefGoogle Scholar
  5. 5.
    Manyika, J., Durrant-Whyte, H.: Data Fusion and Sensor Management: A Decentralized Information-Theoretic Approach. Ellis Horwood, New York (1994)Google Scholar
  6. 6.
    Byers, J., Nasser, G.: Utility-based decision-making in wireless sensor networks. In: Proc. IEEE First Annual Workshop on Mobile and Ad Hoc Networking and Computing, Boston, MA, pp. 143–144 (2000)Google Scholar
  7. 7.
    Feng, Z., Jaewon, S., Reich, J.: Information-driven dynamic sensor collaboration. IEEE Signal Processing Magazine 19(2), 61–72 (2002)CrossRefGoogle Scholar
  8. 8.
    Wei-Peng, C., Hou, J.C., Lui, S.: Dynamic clustering for acoustic target tracking in wireless sensor networks. IEEE Transactions on Mobile Computing 3(3), 258–271 (2004)CrossRefGoogle Scholar
  9. 9.
    Liu, J., Reich, J.E., Feng, Z.: Collaborative in-network processing for target tracking. EURASIP, J. Appl. Signal Process 2003, 378–391 (2003)MATHCrossRefGoogle Scholar
  10. 10.
    Spanos, D.P., Olfati-Saber, R., Murray, R.M.: Approximate distributed kalman filtering in sensor networks with quantifiable performance. Information Processing in Sensor Networks, pp. 133–139 (April 2005)Google Scholar
  11. 11.
    Ho, Y.C., Lee, R.C.K.: A bayesian approach to problems in stochastic estimation and control. IEEE Trans. Automat. Contr. 9, 333–339 (1964)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Chu, M., Haussecker, H., Feng, Z.: Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks. Int. J. High-Performance Comput. Appl. 16(3), 293–313 (2002)CrossRefGoogle Scholar
  13. 13.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)MATHCrossRefGoogle Scholar
  14. 14.
    Ertin, E., Fisher, J.W., Lee, C.P.: Maximum mutual information principle for dynamic sensor query problems. In: Proc. Information Processing in Sensor Networks, Palo Alto, California, USA, pp. 405–416 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yu Liu
    • 1
  • Yumei Wang
    • 1
  • Lin Zhang
    • 1
  • Chan-hyun Youn
    • 2
  1. 1.School of Information EngineeringBeijing University of Posts and TelecommunicationsBeijingChina
  2. 2.Information and Communications UniversityRepublic of Korea

Personalised recommendations