A Self-tuning Reliable Dynamic Scheme for Multicast Flow Control

  • Naixue Xiong
  • Yanxiang He
  • Laurence T. Yang
  • Yan Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4159)


This paper describes a novel control-theoretic distributed multicast congestion control scheme, called self-tuning proportional integrative plus derivative (SPID) controller. The control parameters can be designed to ensure the stability of the control loop in terms of source rate. The distributed explicit rate SPID overcomes the vulnerability that suffers from the heterogeneous multicast receivers. The SPID controller is located at the multicast source to regulate the transmission rate. Simulation results demonstrate the efficiency of the proposed scheme in terms of system stability and fast response, low packet loss, and high scalability.


Packet Loss Destination Node Congestion Control Packet Loss Rate Multicast Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gau, R.-H., Haas, Z.J., Krishnamachari, B.: On Multicast Flow Control for Heterogeneous Receivers. IEEE/ACM Transactions on Networking 10(1), 86–101 (2002)CrossRefGoogle Scholar
  2. 2.
    Siu, K.Y., Tzeng, H.Y.: On max-min fair congestion control for multicast ABR services in ATM. IEEE Journal on Selected Areas in Communications 15, 545–556 (1997)CrossRefGoogle Scholar
  3. 3.
    Zhang, X., Shin, K.G.: Statistical analysis of feedback synchronization signaling delay for multicast flow control. In: Proc. of IEEE INFOCOM, April 2001, pp. 1152–1161 (2001)Google Scholar
  4. 4.
    Ren, W., Siu, K.Y., Suzuki, H.: On the performance of congestion control algorithms for multicast ABR service in ATM. In: Proc. of IEEE ATM Workshop (August 1996)Google Scholar
  5. 5.
    Zhang, X., Shin, K.G., Saha, D., Kandlur, D.D.: Scalable Flow Control for Multicast ABR Services in ATM Networks. IEEE/ACM Transactions on Networking 10(1), 67–85 (2002)CrossRefGoogle Scholar
  6. 6.
    Kolarov, A., Ramamurthy, G.: A control theoretic approach to the design of an explicit rate controller for ABR service. IEEE/ACM Transactions on Networking 7, 741–753 (1999)CrossRefGoogle Scholar
  7. 7.
    Blanchini, F., Lo Cigno, R., Tempo, R.: Robust rate control for integrated services packet networks. IEEE/ACM Transactions on Networking 10(5), 644–652 (2002)CrossRefGoogle Scholar
  8. 8.
    Jain, R., Kalyanaraman, S., Goyal, R., Fahmy, S., Viswanathan, R.: ERICA Switch Algorithm: A Complete Description, ATM Forum-Tm 96-1172 (Auguest 1996)Google Scholar
  9. 9.
    Lee, S.H., Lim, J.T.: Multicast ABR service in ATM networks using a fuzzy-logic-based consolidation algorithm. IEE Proceeding Communication 148(1), 8–13 (2001)CrossRefGoogle Scholar
  10. 10.
    Xiong, N., He, Y., Yang, Y.: An Efficient Flow Control Algorithm for Multi-rate Multicast Networks. In: 2004 IEEE International Workshop on IP Operations and Management (IPOM 2004), Beijing, China, October 11Đ3, pp. 69–76 (2004)Google Scholar
  11. 11.
    Rizzo, L.: Pgmcc: a TCP-friendly single-rate multicast congestion control scheme. In: Proceedigs of ACM SIGCOMM 2000, Stockholm, pp. 17–28 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Naixue Xiong
    • 1
    • 2
  • Yanxiang He
    • 1
  • Laurence T. Yang
    • 3
  • Yan Yang
    • 2
  1. 1.The State Key Lab of Software Engineering, Computer SchoolWuhan University 
  2. 2.School of Information ScienceJapan Advanced Institute of Science and Technology 
  3. 3.Department of Computer ScienceSt. Francis Xavier UniversityCanada

Personalised recommendations