Scalable Resources Portfolio Selection with Fairness Based on Economical Methods

  • Yu Hua
  • Dan Feng
  • Chanle Wu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4159)


The fairness of scheduling resources are important to improve the whole performance. In this paper, we study the economy-based approach, i.e., portfolio selection, to realize the dynamic allocation of distributed and heterogeneous resources. The portfolio selection method emphasizes the mean-variance model, which can evaluate the final return and help the scheduler to adjust the allocation policy. We present the practical algorithms for network nodes and Bloom filter-based surveillance, which can support the efficient adjustment of a scheduler.


Hash Function Network Node Portfolio Optimization Portfolio Selection Request Message 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Markowitz, H.: Portfolio Selection. The Journal of Finance 7, 77–91 (1952)CrossRefGoogle Scholar
  2. 2.
    Markowitz, H.: Portfolio Selection: Efficient Diversification of Investments. Yale University Press (June 1971)Google Scholar
  3. 3.
    Semret, N., Liao, R.F., Campbell, A.T., Lazar, A.A.: Pricing, provisioning and peering: dynamic markets for differentiated Internet services and implications for network interconnections. IEEE Journal on Selected Areas in Communications 18, 2499–2513 (2000)CrossRefGoogle Scholar
  4. 4.
    Yin, G., Zhou, X.Y.: Markowitz’s mean-variance portfolio selection with regime switching: from discrete-time models to their continuous-time limits. IEEE Transactions on Automatic Control 49, 349–360 (2004)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Ida, M.: Mean-variance portfolio optimization model with uncertain coefficients. In: Proceedings of the 10th IEEE International Conference on Fuzzy Systems, pp. 1223–1226 (December 2001)Google Scholar
  6. 6.
    Davis, M.H., Norman, A.R.: Portfolio Selection with Transaction Costs. Mathematics of Operations Research, 676–713 (November 1990)Google Scholar
  7. 7.
    Bloom, B.: Space/time Trade-offs in Hash Coding with Allowable Errors. Communications of the ACM 13, 422–426 (1970)MATHCrossRefGoogle Scholar
  8. 8.
    Fan, L., Cao, P., Almeida, J., Broder, Z.A.: Summary cache: a scalable wide area web cache sharing protocol. IEEE/ACM Trans. on Networking 8, 281–293 (2000)CrossRefGoogle Scholar
  9. 9.
    Mitzenmacher, M.: Compressed Bloom filters. IEEE/ACM Trans. on Networking 10, 604–612 (2002)CrossRefGoogle Scholar
  10. 10.
    Kumar, A., Xu, J., Wang, J., Spatschek, O., Li, L.: Space-Code Bloom filter for efficient per-flow traffic measurement. In: Proceedings of the twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM), vol. 3, pp. 1762–1773 (2004)Google Scholar
  11. 11.
    Saar, C., Yossi, M.: Spectral Bloom filters. In: Proceedings of the 2003 ACM SIGMOD international conference on Management of data, pp. 241–252 (2003)Google Scholar
  12. 12.
    Broder, A., Mitzenmacher, M.: Network applications of Bloom filters: a survey. Internet Mathematics 1, 485–509 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yu Hua
    • 1
  • Dan Feng
    • 1
  • Chanle Wu
    • 2
  1. 1.School of Computer Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
  2. 2.School of ComputerWuhan UniversityWuhanChina

Personalised recommendations