A Matlab Implementation of an Algorithm for Computing Integrals of Products of Bessel Functions

  • Joris Van Deun
  • Ronald Cools
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4151)


We present a Matlab program that computes infinite range integrals of an arbitrary product of Bessel functions of the first kind. The algorithm uses an integral representation of the upper incomplete Gamma function to integrate the tail of the integrand. This paper describes the algorithm and then focuses on some implementation aspects of the Matlab program. Finally we mention a generalisation that incorporates the Laplace transform of a product of Bessel functions.


Bessel Function Average Execution Time Continue Fraction Expansion Incomplete Gamma Function Arbitrary Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, Applied Mathematics Series, vol. 55. National Bureau of Standards, Washington, D.C. (1964)Google Scholar
  2. 2.
    Adamchik, V.: The evaluation of integrals of Bessel functions via G–function identities. J. Comput. Appl. Math. 64, 283–290 (1995)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Amos, D.E.: Algorithm 644: A portable package for Bessel functions of a complex argument and nonnegative order. ACM Trans. Math. Software 12(3), 265–273 (1986)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-Digit Challenge. A Study in High-Accuracy Numerical Computing. SIAM, Philadelphia (2004)MATHGoogle Scholar
  5. 5.
    Conway, J.T.: Analytical solutions for the newtonian gravitational field induced by matter within axisymmetric boundaries. Mon. Not. R. Astron. Soc. 316, 540–554 (2000)CrossRefGoogle Scholar
  6. 6.
    Davis, A.M.J.: Drag modifications for a sphere in a rotational motion at small non-zero Reynolds and Taylor numbers: wake interference and possible coriolis effects. J. Fluid Mech. 237, 13–22 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Davis, S.: Scalar field theory and the definition of momentum in curved space. Class. Quantum Grav. 18, 3395–3425 (2001)MATHCrossRefGoogle Scholar
  8. 8.
    Fikioris, G., Cottis, P.G., Panagopoulos, A.D.: On an integral related to biaxially anisotropic media. J. Comput. Appl. Math. 146, 343–360 (2002)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Gaspard, R., Alonso Ramirez, D.: Ruelle classical resonances and dynamical chaos: the three- and four-disk scatterers. Physical Review A 45(12), 8383–8397 (1992)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Groote, S., Körner, J.G., Pivovarov, A.A.: On the evaluation of sunset-type Feynman diagrams. Nucl. Phys. B 542, 515–547 (1999)MATHCrossRefGoogle Scholar
  11. 11.
    Holmes, M.J., Kashyap, R., Wyatt, R.: Physical properties of optical fiber sidetap grating filters: free space model. IEEE Journal on Selected Topics in Quantum Electronics 5(5), 1353–1365 (1999)CrossRefGoogle Scholar
  12. 12.
    Kostlan, E., Gokhman, D.: A program for calculating the incomplete Gamma function. Technical report, Dept. of Mathematics, Univ. of California, Berkeley (1987)Google Scholar
  13. 13.
    Lotter, T., Benien, C., Vary, P.: Multichannel direction-independent speech enhancement using spectral amplitude estimation. EURASIP Journal on Applied Signal Processing 11, 1147–1156 (2003)Google Scholar
  14. 14.
    Lukas, S.K.: Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Math. 64, 269–282 (1995)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Nicholson, J.W.: Generalisation of a theorem due to Sonine. Quart. J. Math. 48, 321–329 (1920)Google Scholar
  16. 16.
    Roesset, J.M.: Nondestructive dynamic testing of soils and pavements. Tamkang Journal of Science and Engineering 1(2), 61–81 (1998)Google Scholar
  17. 17.
    Savov, S.V.: An efficient solution of a class of integrals arising in antenna theory. IEEE Antenna’s and Propagation Magazine 44(5), 98–101 (2002)CrossRefGoogle Scholar
  18. 18.
    Singh, N.P., Mogi, T.: Electromagnetic response of a large circular loop source on a layered earth: a new computation method. Pure Appl. Geophys. 162, 181–200 (2005)CrossRefGoogle Scholar
  19. 19.
    Sonine, N.J.: Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 16, 1–80 (1880)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Stone, H.A., McConnell, H.M.: Hydrodynamics of quantized shape transitions of lipid domains. Royal Society of London Proceedings Series A 448, 97–111 (1995)MATHCrossRefGoogle Scholar
  21. 21.
    Tanzosh, J., Stone, H.A.: Motion of a rigid particle in a rotating viscous flow: an integral equation approach. J. Fluid Mech. 275, 225–256 (1994)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Tezer, M.: On the numerical evaluation of an oscillating infinite series. J. Comput. Appl. Math. 28, 383–390 (1989)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Trefethen, L.N.: The $100, 100-Digit Challenge. SIAM News 35(6), 1–3 (2002)Google Scholar
  24. 24.
    Van Deun, J., Cools, R.: A stable recurrence for the incomplete Gamma function with imaginary second argument. Technical Report TW441, Department of Computer Science, K.U.Leuven (November 2005)Google Scholar
  25. 25.
    Van Deun, J., Cools, R.: Algorithm 8XX: Computing infinite range integrals of an arbitrary product of Bessel functions. ACM Trans. Math. Software (to appear, 2006)Google Scholar
  26. 26.
    Watson, G.N.: A treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1966)MATHGoogle Scholar
  27. 27.
    Winitzki, S.: Computing the incomplete Gamma function to arbitrary precision. In: Kumar, V., Gavrilova, M.L., Tan, C.J.K., L’Ecuyer, P. (eds.) ICCSA 2003. LNCS, vol. 2667, pp. 790–798. Springer, Heidelberg (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joris Van Deun
    • 1
  • Ronald Cools
    • 1
  1. 1.Dept. of Computer ScienceK.U. LeuvenLeuvenBelgium

Personalised recommendations