Plural, a Non–commutative Extension of Singular: Past, Present and Future

  • Viktor Levandovskyy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4151)


We describe the non–commutative extension of the computer algebra system Singular, called Plural. In the system, we provide rich functionality for symbolic computation within a wide class of non–commutative algebras. We discuss the computational objects of Plural, the implementation of main algorithms, various aspects of software engineering and numerous applications.


Commutative Algebra Symbolic Computation Computer Algebra System Path Algebra Weyl Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apel, J.: Gröbnerbasen in nichtkommutativen Algebren und ihre Anwendung. Dissertation, Universität Leipzig (1988)Google Scholar
  2. 2.
    Apel, J., Klaus, U.: FELIX, a Special Computer Algebra System for the Computation in Commutative and Non-commutative Rings and Modules (1998), available from:
  3. 3.
    Brickenstein, M.: Neue Varianten zur Berechnung von Gröbnerbasen. Diplomarbeit, Universität Kaiserslautern (2004)Google Scholar
  4. 4.
    Brickenstein, M.: Slimgb: Gröbner Bases with Slim Polynomials. In: Reports On Computer Algebra No. 35, Centre for Computer Algebra, University of Kaiserslautern (2005), available from:
  5. 5.
    Bueso, J., Gómez–Torrecillas, J., Verschoren, A.: Algorithmic methods in non-commutative algebra. Applications to quantum groups. Kluwer Academic Publishers, Dordrecht (2003)MATHGoogle Scholar
  6. 6.
    Castro-Jiménez, F.J., Ucha, J.M.: On the computation of Bernstein–Sato ideals. J. of Symbolic Computation 37, 629–639 (2004)MATHCrossRefGoogle Scholar
  7. 7.
    Chyzak, F.: The GROEBNER Package for MAPLE (2003), available from:
  8. 8.
    Chyzak, F., Salvy, B.: Non–commutative Elimination in Ore Algebras Proves Multivariate Identities. J. of Symbolic Computation 26(2), 187–227 (1998)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Chyzak, F., Quadrat, A., Robertz, D.: Linear control systems over Ore algebras. Effective algorithms for the computation of parametrizations. In: Proc. of Workshop on Time-Delay Systems (TDS 2003), INRIA (2003)Google Scholar
  10. 10.
    Cohen, A.M., Gijsbers, D.A.H.: GBNP, a Non–commutative Gröbner Bases Package for GAP 4 (2003), available from:
  11. 11.
    Eisenbud, D., Fløystad, G., Schreyer, F.-O.: Sheaf algorithms using the exterior algebra. Trans. Am. Math. Soc. 355(11), 4397–4426 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    García Román, M., García Román, S.: Gröbner bases and syzygies on bimodules over PBW algebras. J. of Symbolic Computation 40(3), 1039–1052 (2005)MATHCrossRefGoogle Scholar
  13. 13.
    Gerdt, V.P.: Involutive Algorithms for Computing Groebner Bases. In: Pfister, G., Cojocaru, S., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam (2005)Google Scholar
  14. 14.
    Gómez–Torrecillas, J., Lobillo, F.J.: Auslander-regular and Cohen-Macaulay quantum groups. J. Algebr. Represent. Theory 7(1), 35–42 (2004)MATHCrossRefGoogle Scholar
  15. 15.
    Granger, M., Oaku, T., Takayama, N.: Tangent cone algorithm for homogenized differential operators. J. of Symbolic Computation 39(3–4), 417–431 (2005)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Grayson, D., Stillman, M.: MACAULAY 2, a Software System for Research in Algebraic Geometry (2005), available from:
  17. 17.
    Green, E., Heath, L., Keller, B.: Opal: A System for Computing Noncommutative Gröbner Bases. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 331–334. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Greuel, G.-M., Pfister, G., Bachmann, O., Lossen, C., Schönemann, H.: A SINGULAR Introduction to Commutative Algebra. Springer, Heidelberg (2002)MATHGoogle Scholar
  19. 19.
    Greuel, G.-M., Levandovskyy, V., Schönemann, H.: PLURAL. A SINGULAR 3.0 Subsystem for Computations with Non–commutative Polynomial Algebras. Centre for Computer Algebra, University of Kaiserslautern (2006)Google Scholar
  20. 20.
    Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR 3.0. A Computer Algebra System for Polynomial Computations. Centre for Computer Algebra. University of Kaiserslautern (2006), available from:
  21. 21.
    Helton, J.W., Stankus, M.: NCGB 3.1, a Noncommutative Gröbner Basis Package for Mathematica (2001), available from:
  22. 22.
    Backelin, J., et. al. The Gröbner basis calculator BERGMAN (2006), available from:
  23. 23.
    Kandri-Rody, A., Weispfenning, V.: Non–commutative Gröbner bases in algebras of solvable type. J. of Symbolic Computation 9(1), 1–26 (1990)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Kredel, H.: Solvable polynomial rings. Shaker (1993)Google Scholar
  25. 25.
    Kredel, H., Pesch, M.: MAS, Modula-2 Algebra System (1998), available from:
  26. 26.
    Levandovskyy, V.: Non–commutative computer algebra for polynomial algebras: Gröbner bases, applications and implementation. Doctoral Thesis, Universität Kaiserslautern (2005), available from:
  27. 27.
    Levandovskyy, V.: On preimages of ideals in certain non–commutative algebras. In: Pfister, G., Cojocaru, S., Ufnarovski, V. (eds.) Computational Commutative and Non-Commutative Algebraic Geometry. IOS Press, Amsterdam (2005)Google Scholar
  28. 28.
    Levandovskyy, V.: PBW Bases, Non–Degeneracy Conditions and Applications. In: Buchweitz, R.-O., Lenzing, H. (eds.) Representation of algebras and related topics. Proceedings of the ICRA X conference, vol. 45, pp. 229–246. AMS. Fields Institute Communications (2005)Google Scholar
  29. 29.
    Levandovskyy, V.: Intersection of ideals with non–commutative subalgebras. In: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC 2006). ACM Press, New York (to appear, 2006)Google Scholar
  30. 30.
    Levandovskyy, V., Schönemann, H.: Plural — a computer algebra system for noncommutative polynomial algebras. In: Proc. of the International Symposium on Symbolic and Algebraic Computation (ISSAC 2003). ACM Press, New York (2003)Google Scholar
  31. 31.
    Levandovskyy, V., Zerz, E.: Algebraic systems theory and computer algebraic methods for some classes of linear control systems. In: Proc. of the International Symposium on Mathematical Theory of Networks and Systems (MTNS 2006) (2006)Google Scholar
  32. 32.
    Li, H.: Noncommutative Gröbner bases and filtered-graded transfer. Springer, Heidelberg (2002)MATHGoogle Scholar
  33. 33.
    McConnell, J.C., Robson, J.C.: Noncommutative Noetherian rings. AMS (2001)Google Scholar
  34. 34.
    Mora, T.: Groebner bases in non-commutative algebras. In: Gianni, P. (ed.) ISSAC 1988. LNCS, vol. 358, pp. 150–161. Springer, Heidelberg (1989)Google Scholar
  35. 35.
    Mora, T.: An introduction to commutative and non-commutative Groebner bases. Theor. Comp. Sci. 134, 131–173 (1994)MATHCrossRefMathSciNetGoogle Scholar
  36. 36.
    Oaku, T., Takayama, N.: An algorithm for de Rham cohomology groups of the complement of an affine variety via D-module computation. Journal of Pure and Applied Algebra 139(1–3), 201–233 (1999)MATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Pearce, R.: The F4 Algorithm for Gröbner Bases, Package for MAPLE (2005), available from:
  38. 38.
    Saito, S., Sturmfels, B., Takayama, N.: Gröbner Deformations of Hypergeometric Differential Equations. Springer, Heidelberg (2000)MATHGoogle Scholar
  39. 39.
    Takayama, N.: kAN/SM1, a Gröbner engine for the ring of differential and difference operators. available from:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Viktor Levandovskyy
    • 1
  1. 1.Research Institute for Symbolic Computation (RISC)Johannes Kepler UniversityLinzAustria

Personalised recommendations