Algebraic Computation of Some Intersection D-Modules

  • F. J. Calderón Moreno
  • L. Narváez Macarro
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4151)


Let DC n be a locally quasi-homogeneous free divisor (e.g. a free hyperplane arrangement), \(\cal E\) an integrable logarithmic connection with respect to D and \({\cal L}\) the local system of horizontal sections of \({\cal E}\) on XD. Let \({\rm IC}_X({\cal E})\) be the holonomic regular \({\cal D}_{X}\)-module whose de Rham complex is the intersection complex \({\rm IC}_X({\cal L})\) of Deligne-Goresky-MacPherson. In this paper we show how to use our previous results on the algebraic description of \({\rm IC}_X({\cal E})\) in order to obtain explicit presentations of it. Concrete examples for n = 2 are included.


Meromorphic Function Local System Horizontal Section Regular Sequence Algebraic Computation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers, Astérisque 100. S.M.F., Paris (1983)Google Scholar
  2. 2.
    Calderón-Moreno, F.J.: Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor. A. Sci. Éc. N. Sup. (4) 32(5), 701–714 (1999)MATHGoogle Scholar
  3. 3.
    Calderón Moreno, F.J., Narváez Macarro, L.: Locally quasi-homogeneous free divisors are Koszul free. Proc. Steklov Inst. Math. 238, 72–77 (2002)Google Scholar
  4. 4.
    Calderón-Moreno, F.J., Narváez-Macarro, L.: The module \({\mathcal D}f^s\) for locally quasi-homogeneous free divisors. Compositio Math. 134(1), 59–74 (2002)Google Scholar
  5. 5.
    Calderón Moreno, F.J., Narváez Macarro, L.: Dualité et comparaison sur les complexes de de Rham logarithmiques par rapport aux diviseurs libres. Ann. Inst. Fourier (Grenoble) 55(1) (2005), math.AG/0411045
  6. 6.
    Moreno, F.J.C., Macarro, L.N.: On the logarithmic comparison theorem for integrable logarithmic connections (preprint, 2006), math.AG/0603003
  7. 7.
    Castro-Jiménez, F.J., Ucha-Enríquez, J.M.: Free divisors and duality for \(\mathcal D\)-modules. Proc. Steklov Inst. Math. 238, 88–96 (2002), math.AG/0103085
  8. 8.
    Castro-Jiménez, F.J., Ucha-Enríquez, J.M.: Testing the logarithmic comparison theorem for free divisors. Experiment. Math. 13(4), 441–449 (2004)MATHMathSciNetGoogle Scholar
  9. 9.
    Deligne, P.: Equations Différentielles à Points Singuliers Réguliers. Lect. Notes in Math, vol. 163. Springer, Heidelberg (1970)MATHGoogle Scholar
  10. 10.
    Grayson, D.R., Stillman, M.E.: Macaulay 2, a software system for research in algebraic geometry, available at:
  11. 11.
    Kashiwara, M.: On the holonomic systems of linear differential equations II. Invent. Math. 49, 121–135 (1978)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Leykin, A., Tsai, H.: D-modules for Macaulay 2. Package included in [10]Google Scholar
  13. 13.
    Maisonobe, P., Narváez, L.(eds.) Éléments de la théorie des systèmes différentiels géométriques, Séminaires et Congrès, Soc. Math. France, Paris (2004); Cours du CIMPA, École d’été de SévilleGoogle Scholar
  14. 14.
    Mebkhout, Z.: Le théorème de positivité, le théorème de comparaison et le théorème d’existence de Riemann. In: [13], pp. 165–308 (2004)Google Scholar
  15. 15.
    Mebkhout, Z., Narváez, L.: La théorie du polynôme de Bernstein-Sato pour les algèbres de Tate et de Dwork-Monsky-Washnitzer. A. S. E.N.S 24, 227–256 (1991)MATHGoogle Scholar
  16. 16.
    Narváez-Macarro, L.: Cycles évanescents et faisceaux pervers: cas des courbes planes irréductibles. Compositio Math. 65, 321–347 (1988)MATHMathSciNetGoogle Scholar
  17. 17.
    Neto, O., Silva, P.C.: Holonomic systems with solutions ramified along a cusp. C. R. Math. Acad. Sci. Paris 335(2), 171–176 (2002)MATHMathSciNetGoogle Scholar
  18. 18.
    Neto, O., Silva, P.C.: On regular holonomic systems with solutions ramified along \(y\sp k=x\sp n\). Pacific J. Math. 207(2), 463–487 (2002)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Oaku, T.: An algorithm of computing b-functions. Duke M. J. 87(1), 115–132 (1997)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Oaku, T., Takayama, N.: Algorithms for D-modules—restriction, tensor product, localization, and local cohomology groups. J. P. Ap. Alg. 156(2-3), 267–308 (2001)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Oaku, T., Takayama, N., Walther, U.: A localization algorithm for D-modules. J. Symbolic Comput. 29(4-5), 721–728 (2000)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo 27, 265–291 (1980)MATHGoogle Scholar
  23. 23.
    Torrelli, T.: On meromorphic functions defined by a differential system of order 1. Bull. Soc. Math. France 132, 591–612 (2004)MATHMathSciNetGoogle Scholar
  24. 24.
    Torrelli, T.: Logarithmic comparison theorem and D-modules: an overview (preprint, 2005), math.AG/0510430

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. J. Calderón Moreno
    • 1
  • L. Narváez Macarro
    • 1
  1. 1.Universidad de SevillaSevillaSpain

Personalised recommendations