Advertisement

Constant-Size Dynamic k-TAA

  • Man Ho Au
  • Willy Susilo
  • Yi Mu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4116)

Abstract

k-times anonymous authentication (k-TAA) schemes allow members of a group to be authenticated anonymously by application providers for a bounded number of times. Dynamic k-TAA allows application providers to independently grant or revoke users from their own access group so as to provide better control over their clients. In terms of time and space complexity, existing dynamic k-TAA schemes are of complexities O(k), where k is the allowed number of authentication. In this paper, we construct a dynamic k-TAA scheme with space and time complexities of O(log(k)). We also outline how to construct dynamic k-TAA scheme with a constant proving effort. Public key size of this variant, however, is O(k).

We then construct an ordinary k-TAA scheme from the dynamic scheme. We also describe a trade-off between efficiency and setup freeness of AP, in which AP does not need to hold any secret while maintaining control over their clients.

To build our system, we modify the short group signature scheme into a signature scheme and provide efficient protocols that allow one to prove in zero-knowledge the knowledge of a signature and to obtain a signature on a committed block of messages. We prove that the signature scheme is secure in the standard model under the q-SDH assumption.

Finally, we show that our dynamic k-TAA scheme, constructed from bilinear pairing, is secure in the random oracle model.

Keywords

k-TAA dynamic k-TAA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boneh, D., Boyen, X.: Short Signatures Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  3. 3.
    Boneh, D., Lynn, B., Shacham, H.: Short Signatures from the Weil Pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Boyen, X., Waters, B.: Compact Group Signatures Without Random Oracles. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 427–444. Springer, Heidelberg (2006), http://www.cs.stanford.edu/~xb/eurocrypt06/ CrossRefGoogle Scholar
  6. 6.
    Camenisch, J.: Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem. PhD Thesis, ETH ZAurich, 1998. Diss. ETH No. 12520, Hartung Gorre Verlag, Konstanz (1998)Google Scholar
  7. 7.
    Camenisch, J.L., Hohenberger, S., Lysyanskaya, A.: Compact E-cash. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 302–321. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Camenisch, J., Lysyanskaya, A.: A Signature Scheme with Efficient Protocols. In: Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Lysyanskaya, A.: Dynamic Accumulators and Application to Efficient Revocation of Anonymous Credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 61–76. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Camenisch, J., Lysyanskaya, A.: Signature Schemes and Anonymous Credentials from Bilinear Maps. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 56–72. Springer, Heidelberg (2004)Google Scholar
  11. 11.
    Dodis, Y., Yampolskiy, A.: A Verifiable Random Function with Short Proofs and Keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Furukawa, J., Imai, H.: An Efficient Group Signature Scheme from Bilinear Maps. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 455–467. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable Random Functions. In: FOCS 1999, pp. 120–130 (1999)Google Scholar
  14. 14.
    Nguyen, L.: Accumulators from Bilinear Pairings and Applications. In: CTRSA 2005, pp. 275–292 (2005)Google Scholar
  15. 15.
    Nguyen, L., Safavi-Naini, R.: Dynamic k-times Anonymous Authentication. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 318–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Pedersen, T.P.: Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992)Google Scholar
  18. 18.
    Teranishi, I., Furukawa, J., Sako, K.: k-Times Anonymous Authentication (extended Abstract). In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 308–322. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Teranishi, I., Sako, K.: k-Times Anonymous Authentication with a Constant Proving Cost. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 525–542. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Man Ho Au
    • 1
  • Willy Susilo
    • 1
  • Yi Mu
    • 1
  1. 1.Center for Information Security Research, School of Information Technology and Computer ScienceUniversity of WollongongWollongongAustralia

Personalised recommendations