Advertisement

Theory and Practice of Multiparty Computation

  • Ivan Damgård
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4116)

Abstract

This is a short summary of the invited talk given by the author at the SCN conference.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bogetoft, P., Damgård, I.B., Jakobsen, T., Nielsen, K., Pagter, J.I., Toft, T.: A Practical Implementation of Secure Auctions Based on Multiparty Integer Computation. In: Di Crescenzo, G., Rubin, A. (eds.) FC 2006. LNCS, vol. 4107, pp. 142–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for Non-Cryptographic Fault-Tolerant Distributed Computation. In: Proc. ACM STOC 1988, pp. 1–10 (1988)Google Scholar
  3. 3.
    Cramer, R., Gennaro, R., Schoenmakers, B.: A Secure and Optimally Efficient Multi-authority Election Scheme. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 103–118. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Canetti, R.: Universally Composable Security, The Eprint archive, http://www.iacr.org
  5. 5.
    Cramer, Damgård: Multiparty Computation, an Introduction, in Contemporary Cryptology. Advanced courses in Mathematics CRM Barcelona, BirkhäuserGoogle Scholar
  6. 6.
    Chaum, D., Crépeau, C., Damgård, I.: Multi-Party Unconditionally Secure Protocols. In: Proc. of ACM STOC 1988, pp. 11–19 (1988)Google Scholar
  7. 7.
    Cramer, R., Damgård, I., Maurer, U.: Multiparty Computations from Any Linear Secret Sharing Scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient Multiparty Computations With Dishonest Minority. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS. vol. 1592, Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Damgård, I.B., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation from Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Jurik, M.: A Generalisation, a Simplification and Some Applications of Paillier’s Probabilistic Public-Key System. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Damgård, I.B., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally Secure Constant-Rounds Multi-party Computation for Equality, Comparison, Bits and Exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Goldreich, O., Micali, S., Wigderson, A.: How to Play Any Mental Game or a Completeness Theorem for Protocols with Honest Majority. In: Proc. of ACM STOC 1987, pp. 218–229 (1987)Google Scholar
  13. 13.
    Gennaro, R., Rabin, M., Rabin, T.: Simplified VSS and Fast-Track Multiparty Computations with Applications to Threshold Cryptography. In: Proc of ACM PODC 1998 (1998)Google Scholar
  14. 14.
    Hirt, M., Maurer, U.: Complete Characterization of Adversaries Tolerable in General Multiparty Computations. In: Proc. ACM PODC 1997, pp. 25–34 (1997)Google Scholar
  15. 15.
    Rabin, T., Ben-Or, M.: Verifiable Secret Sharing and Multiparty Protocols with Honest majority. In: Proc. ACM STOC 1989, pp. 73–85 (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ivan Damgård
    • 1
  1. 1.Dept. of Computer ScienceUniversity of Aarhus 

Personalised recommendations