We present a simple randomized construction of size O(n 3) and depth 5.3logn+O(1) monotone circuits for the majority function on n variables. This result can be viewed as a reduction in the size and a partial derandomization of Valiant’s construction of an O(n 5.3) monotone formula, [15]. On the other hand, compared with the deterministic monotone circuit obtained from the sorting network of Ajtai, Komlós, and Szemerédi [1], our circuit is much simpler and has depth O(logn) with a small constant. The techniques used in our construction incorporate fairly recent results showing that expansion yields performance guarantee for the belief propagation message passing algorithms for decoding low-density parity-check (LDPC) codes, [3]. As part of the construction, we obtain optimal-depth linear-size monotone circuits for the promise version of the problem, where the number of 1’s in the input is promised to be either less than one third, or greater than two thirds. We also extend these improvements to general threshold functions. At last, we show that the size can be further reduced at the expense of increased depth, and obtain a circuit for the majority of size and depth about \(n^{1+\sqrt{2}}\) and 9.9logn.


Majority Function Monotone Formula Expander Graph Circuit Size Sorting Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ajtai, M., Komlós, J., Szemerédi, E.: Sorting in c log n parallel steps. Combinatorica 3(1), 1–19 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Boppana, R.B.: Amplification of probabilistic boolean formulas. In: IEEE Symposium on Foundations of Computer Science (FOCS), pp. 20–29 (1985)Google Scholar
  3. 3.
    Burshtein, D., Miller, G.: Expander graph arguments for message-passing algorithms. IEEE Trans. Inform. Theory 47(2), 782–790 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Caplbo, M., Reingold, O., Vadhan, S., Wingderson, A.: Randomness conductors and constant-degree expansion beyond the degree 2 barrier. In: Proceedings 34th Symposium on Theory of Computing, pp. 659–668 (2002)Google Scholar
  5. 5.
    Dubiner, M., Zwick, U.: Amplification by read-once formulas. SIAM J. Comput. 26(1), 15–38 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Hoory, S., Linial, N., Wigderson, A.: Expander graphs and their applications. The Bulletin of the AMS (to appear)Google Scholar
  7. 7.
    Karchmer, M., Wigderson, A.: Monotone circuits for connectivity require super-logarithmic depth. In: Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, Chicago, IL, pp. 539–550 (May 1988)Google Scholar
  8. 8.
    Luby, M., Mitzenmacher, M., Shokrollahi, A.: Analysis of random processes via and-or tree evaluation. In: ACM-SIAM Symp. on Discrete Algorithms (SODA) (1998)Google Scholar
  9. 9.
    Luby, M., Mitzenmacher, M., Shokrollahi, A., Spielman, D.A.: Analysis of low density codes and improved designs using irregular graphs. In: ACM Symposium on Theory of Computing (STOC) (1998)Google Scholar
  10. 10.
    Moore, E.F., Shannon, C.E.: Reliable circuits using less reliable relays. I, II. J. Franklin Inst. 262, 191–208, 281–297 (1956)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Paterson, M.S.: Improved sorting networks with O(logN) depth. Algorithmica 5(1), 75–92 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Paterson, M.S., Pippenger, N., Zwick, U.: Optimal carry save networks. In: Boolean function complexity (Durham, 1990). London Math. Soc. Lecture Note Ser., vol. 169, pp. 174–201. Cambridge Univ. Press, Cambridge (1992)CrossRefGoogle Scholar
  13. 13.
    Richardson, T., Urbanke, R.: Modern coding theory. Draft of a bookGoogle Scholar
  14. 14.
    Richardson, T., Urbanke, R.: The capacity of low-density parity-check codes under message-passing decoding. IEEE Trans. Inform. Theory 47(2), 599–618 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Valiant, L.G.: Short monotone formulae for the majority function. J. Algorithms 5(3), 363–366 (1984)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shlomo Hoory
    • 1
  • Avner Magen
    • 2
  • Toniann Pitassi
    • 2
  1. 1.IBM Research Laboratory in HaifaIsrael
  2. 2.Department of Computer ScienceUniversity of Toronto 

Personalised recommendations