Randomness-Efficient Sampling Within NC1

  • Alexander Healy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4110)


We construct a randomness-efficient averaging sampler that is computable by uniform constant-depth circuits with parity gates (i.e., in uniform AC 0[⊕]). Our sampler matches the parameters achieved by random walks on constant-degree expander graphs, allowing us to apply a variety expander-based techniques within NC 1. For example, we obtain the following results:
  • Randomness-efficient error-reduction for uniform probabilistic NC 1, TC 0, AC 0[⊕] and AC 0: Any function computable by uniform probabilistic circuits with error 1/3 using r random bits is computable by uniform probabilistic circuits with error δ using r + O(log(1/δ)) random bits.

  • Optimal explicit ε-biased generator in AC 0[⊕]: There is a 1/2Ω( n)-biased generator \(G:{0, 1}^{O(n)} \to {0, 1}^{2^n}\) for which poly(n)-size uniform AC 0[⊕] circuits can compute G(s) i given (s, i) ∈0, 1 O( n) ×0, 1 n . This resolves a question raised by Gutfreund & Viola (Random 2004).

  • uniform BP ·AC 0 ⊆ uniform AC 0/O(n).

Our sampler is based on the zig-zag graph product of Reingold, Vadhan and Wigderson (Annals of Math 2002) and as part of our analysis we give an elementary proof of a generalization of Gillman’s Chernoff Bound for Expander Walks (FOCS 1994).


Random Walk Regular Graph Cayley Graph Seed Length Pseudorandom Generator 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [ABO84]
    Ajtai, M., Ben-Or, M.: A theorem on probabilistic constant depth computation. In: Proceedings of STOC 1984, pp. 471–474 (1984)Google Scholar
  2. [AGHP92]
    Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple constructions of almost k-wise independent random variables. Random Structures & Algorithms 3(3), 289–304 (1992)MATHCrossRefMathSciNetGoogle Scholar
  3. [Ajt93]
    Ajtai, M.: Approximate counting with uniform constant-depth circuits. In: Advances in computational complexity theory, pp. 1–20. AMS (1993)Google Scholar
  4. [AKS87]
    Ajtai, M., Komlos, J., Szemeredi, E.: Deterministic simulation in LOGSPACE. In: Proceedings of STOC 1987, pp. 132–140 (1987)Google Scholar
  5. [AR94]
    Alon, N., Roichman, Y.: Random cayley graphs and expanders. Random Structures & Algorithms 5, 271–284 (1994)MATHCrossRefMathSciNetGoogle Scholar
  6. [BIS90]
    Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC 1. J. of Comp. & Sys. Sci. 41(3), 274–306 (1990)MATHCrossRefMathSciNetGoogle Scholar
  7. [BYGW99]
    Bar-Yossef, Z., Goldreich, O., Wigderson, A.: Deterministic amplification of space-bounded probabilistic algorithms. In: Proceedings of the 14th Conference on Computational Complexity, pp. 188–198 (1999)Google Scholar
  8. [CW89]
    Cohen, A., Wigderson, A.: Dispersers, deterministic amplification, and weak random sources. In: Proceedings of FOCS 1989, pp. 14–19 (1989)Google Scholar
  9. [FK06]
    Fortnow, L., Klivans, A.: Linear advice for randomized logarithmic space. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 469–476. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. [FSS84]
    Furst, M.L., Saxe, J.B., Sipser, M.: Parity, circuits, and the polynomial-time hierarchy. Math. Systems Theory 17(1), 13–27 (1984)MATHCrossRefMathSciNetGoogle Scholar
  11. [GG81]
    Gabber, O., Galil, Z.: Explicit construction of linear size superconcentrators. Journal of Computer and System Sciences 22, 407–420 (1981)MATHCrossRefMathSciNetGoogle Scholar
  12. [GIL+90]
    Goldreich, O., Impagliazzo, R., Levin, L.A., Venkatesan, R., Zuckerman, D.: Security preserving amplification of hardness. In: Proceedings of FOCS 1990, pp. 318–326 (1990)Google Scholar
  13. [Gil94]
    Gillman, D.: A Chernoff bound for random walks on expander graphs. In: Proceedings of FOCS 1994, pp. 680–691 (1994)Google Scholar
  14. [Gol97]
    Goldreich, O.: A sample of samplers - a computational perspective on sampling. Elec. Colloquium on Computational Complexity 4(020) (1997)Google Scholar
  15. [Gol99]
    Goldreich, O.: Modern cryptography, probabilistic proofs and pseudorandomness. Springer, Berlin (1999)Google Scholar
  16. [GV04]
    Gutfreund, D., Viola, E.: Fooling parity tests with parity gates. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) RANDOM 2004 and APPROX 2004. LNCS, vol. 3122, pp. 381–392. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. [Hea06]
    Healy, A.: Randomness-efficient sampling within NC1. Elec. Col. on Comp. Complexity, TR06-058 (2006), http://eccc.hpi-web.de/eccc/
  18. [HV06]
    Healy, A., Viola, E.: Constant-depth circuits for arithmetic in finite fields of characteristic two. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 672–683. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. [IW97]
    Impagliazzo, R., Wigderson, A.: \(\mathit{P} = \mathit{BPP}\) if E requires exponential circuits: Derandomizing the XOR lemma. In: Proc. of STOC 1997 (1997)Google Scholar
  20. [IZ89]
    Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Proceedings of FOCS 1989, pp. 248–253 (1989)Google Scholar
  21. [LPS88]
    Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatroica 8(3), 261–277 (1988)MATHCrossRefMathSciNetGoogle Scholar
  22. [Mar73]
    Margulis, G.A.: Explicit constructions of expanders. Problemy Peredachi Informatssi; Problems of Information Transmission 9(4), 71–80 (1973)MATHMathSciNetGoogle Scholar
  23. [Nis91]
    Nisan, N.: Pseudorandom bits for constant depth circuits. Combinatorica 11(1), 63–70 (1991)MATHCrossRefMathSciNetGoogle Scholar
  24. [Nis92]
    Nisan, N.: Pseudorandom generators for space-bounded computation. Combinatorica 12 (1992)Google Scholar
  25. [NN90]
    Naor, J., Naor, M.: Small-bias probability spaces: efficient constructions and applications. In: Proceedings of STOC 1990, pp. 213–223 (1990)Google Scholar
  26. [Raz87]
    Razborov, A.A.: Lower bounds on the dimension of schemes of bounded depth in a complete basis containing the logical addition function. Akademiya Nauk SSSR. Mat. Zametki 41(4), 598–607, 623 (1987)MathSciNetGoogle Scholar
  27. [RVW02]
    Reingold, O., Vadhan, S., Wigderson, A.: Entropy waves, the zig-zag graph product and new constant-degree expanders. Annals of Mathematics 155(1), 157–187 (2002)MATHCrossRefMathSciNetGoogle Scholar
  28. [Sak96]
    Saks, M.: Randomization and derandomization in space-bounded computation. In: Proc. of the 11th Conference on Computational Complexity (1996)Google Scholar
  29. [Vio04]
    Viola, E.: The complexity of constructing pseudorandom generators from hard functions. Computational Complexity 13(3-4), 147–188 (2004)MATHCrossRefMathSciNetGoogle Scholar
  30. [Vio05]
    Viola, E.: Pseudorandom bits for constant-depth circuits with few arbitrary symmetric gates. In: Proc. of 20th Conf. on Comp. Complexity (2005)Google Scholar
  31. [Vol99]
    Vollmer, H.: Introduction to circuit complexity. Springer, Heidelberg (1999)Google Scholar
  32. [WX05]
    Wigderson, A., Xiao, D.: A randomness-efficient sampler for matrix-valued functions and applications. In: Proceedings of FOCS 2005 (2005). See also ECCC Technical Report TR05-107, http://eccc.hpi-web.de/eccc/
  33. [Zuc97]
    Zuckerman, D.: Randomness-optimal oblivious sampling. Random Structures & Algorithms 11(4), 345–367 (1997)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Alexander Healy
    • 1
  1. 1.Division of Engineering and Applied SciencesHarvard UniversityCambridgeUSA

Personalised recommendations