Advertisement

Abstract

Given a (directed) graph with costs on the edges, the power of a node is the maximum cost of an edge leaving it, and the power of the graph is the sum of the powers of its nodes. Motivated by applications for wireless networks, we consider fundamental directed connectivity network design problems under the power minimization criteria: the k-outconnected and the k-connected spanning subgraph problems. For k = 1 these problems are at least as hard as the Set-Cover problem and thus have an Ω(ln |V|) approximation threshold, while for arbitrary k a polylogarithmic approximation algorithm is unlikely. We give an O(ln |V|)-approximation algorithm for any constant k. In fact, our results are based on a much more general O(ln |V|)-approximation algorithm for the problem of finding a min-power edge-cover of an intersecting set-family; a set-family \({\cal F}\) on a groundset V is intersecting if \(X \cap Y,X \cup Y \in {\cal F}\) for any intersecting \(X,Y \in {\cal F}\), and an edge set I covers \({\cal F}\) if for every \(X \in {\cal F}\) there is an edge in I entering X.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Althaus, E., Calinescu, G., Mandoiu, I., Prasad, S., Tchervenski, N., Zelikovsky, A.: Power efficient range assignment in ad-hoc wireless networks. In: WCNC Proc., pp. 1889–1894 (2003)Google Scholar
  2. 2.
    Calinescu, G., Kapoor, S., Olshevsky, A., Zelikovsky, A.: Network lifetime and power assignment in ad hoc wireless networks. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 114–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Cheriyan, J., Vempala, S., Vetta, A.: An Approximation Algorithm for the Minimum-Cost k-Vertex Connected Subgraph. SIAM J. on Computing 32(4), 1050–1055 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Edmonds, J.: Matroid intersection. Annals of Discrete Math. 4, 185–204 (1979)MathSciNetGoogle Scholar
  5. 5.
    Frank, A.: Connectivity and network flows. In: Graham, R., Grötschel, M., Lovász, L. (eds.) Handbook of Combinatorics, pp. 111–177. Elsevier Science, Amsterdam (1995)Google Scholar
  6. 6.
    Frank, A.: Increasing the rooted-connectivity of a digraph by one. Mathematical Programming 84(3), 565–576 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Frank, A., Tardos, É.: An application of submodular flows. Linear Algebra and its Applications 114/115, 329–348 (1989)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Gabow, H.N.: A representation for crossing set families with application to submodular flow problems. In: SODA Proc., pp. 202–211 (1993)Google Scholar
  9. 9.
    Guha, S., Khuller, S.: Improved methods for approximating node weighted Steiner trees and connected dominating sets. Inf. Comput. 150(1), 57–74 (1999)CrossRefMathSciNetGoogle Scholar
  10. 10.
    Hajiaghayi, M.T., Kortsarz, G., Mirokni, V.S., Nutov, Z.: Power optimization for connectivity problems. In: Jünger, M., Kaibel, V. (eds.) IPCO 2005. LNCS, vol. 3509, pp. 349–361. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Jain, K.: A Factor 2 Approximation Algorithm for the Generalized Steiner Network Problem. Combinatorica 21(1), 39–60 (2001)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Johnson, D.S.: Approximation Algorithms for Combinatorial Problems. Journal of Computing and System Sciences 9(3), 256–278 (1974)MATHCrossRefGoogle Scholar
  13. 13.
    Khuller, S.: Approximation algorithms for for finding highly connected subgraphs. In: Hochbaum, D.S. (ed.) Approximation Algorithms for NP-hard problems, ch. 6, pp. 236–265. PWS (1995)Google Scholar
  14. 14.
    Khuller, S., Vishkin, U.: Biconnectivity approximations and graph carvings. Journal of the Association for Computing Machinery 41(2), 214–235 (1994)MATHMathSciNetGoogle Scholar
  15. 15.
    Klein, C., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted steiner trees. Journal of Algorithms 19(1), 104–115 (1995)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kortsarz, G., Mirokni, V.S., Nutov, Z., Tsanko, E.: Approximation algorithms for minimum power fault tolerant network design (manuscript, 2006)Google Scholar
  17. 17.
    Kortsarz, G., Nutov, Z.: Approximating node-connectivity problems via set covers. Algorithmica 37, 75–92 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kortsarz, G., Nutov, Z.: Approximating k-node connected subgraphs via critical graphs. SIAM J. on Computing 35(1), 247–257 (2005)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kortsarz, G., Nutov, Z.: Approximating minimum cost connectivity problems. In: Gonzalez, T.F. (ed.) Approximation Algorithms and Metaheuristics (to appear)Google Scholar
  20. 20.
    Lando, Y., Nutov, Z.: On hardness of minimum power connectivity problems (manuscript 2006)Google Scholar
  21. 21.
    Nutov, Z.: Approximating minimum power connectivity problems (manuscript, 2006)Google Scholar
  22. 22.
    Raz, R., Safra, S.: A sub-constant error-probability low-degree test and a sub-constant error-probability PCP characterization of NP. In: STOC Proc., pp. 475–484 (1997)Google Scholar
  23. 23.
    Williamson, D.P., Goemans, M.X., Mihail, M., Vazirani, V.V.: A primal-dual approximation algorithm for generalized Steiner network problems. Combinatorica 15, 435–454 (1995)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zeev Nutov
    • 1
  1. 1.The Open University of IsraelRaananaIsrael

Personalised recommendations