The data migration problem is to compute an efficient plan for moving data stored on devices in a network from one configuration to another. It is modeled by a transfer graph, where vertices represent the storage devices, and the edges represent the data transfers required between pairs of devices. Each vertex has a non-negative weight, and each edge has unit processing time. A vertex completes when all the edges incident on it complete; the constraint is that two edges incident on the same vertex cannot be processed simultaneously. The objective is to minimize the sum of weighted completion times of all vertices. Kim (Journal of Algorithms, 55:42-57, 2005) gave an LP-rounding 3-approximation algorithm. We give a more efficient primal-dual algorithm that achieves the same approximation guarantee, which can be extended to yield a 5.83-approximation for arbitrary processing times. We also study a variant of the open shop scheduling problem. This is a special case of the data migration problem in which the transfer graph is bipartite and the objective is to minimize the completion times of edges. We present a simple algorithm that achieves an approximation ratio of \({\sqrt{2}}\) ≈ 1.414, thus improving the 1.796-approximation given by Gandhi et al. (ACM Transaction on Algorithms, 2(1):116-129, 2006). We show that the analysis of our algorithm is almost tight.


Completion Time Bipartite Graph Linear Programming Relaxation Combinatorial Algorithm Data Migration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, E., Hall, J., Hartline, J., Hobbes, M., Karlin, A., Saia, J., Swaminathan, R., Wilkes, J.: An Experimental Study of Data Migration Algorithms. In: Proc. of the Workshop on Algorithm Engineering, pp. 145–158 (2001)Google Scholar
  2. 2.
    Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On Chromatic Sums and Distributed Resource Allocation. Information and Computation 140, 183–202 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chakrabarti, S., Phillips, C.A., Schulz, A.S., Shmoys, D.B., Stein, C., Wein, J.: Improved Scheduling Problems For Minsum Criteria. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 646–657. Springer, Heidelberg (1996)Google Scholar
  4. 4.
    Coffman, E.G., Garey, M.R., Johnson, D.S., LaPaugh, A.S.: Scheduling File Transfers. SIAM Journal on Computing 14(3), 744–780 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Improved Results for Data Migration and Openshop Scheduling. ACM Transactions on Algorithms 2(1), 116–129 (2006)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Improved Bounds for Scheduling Conflicting Jobs with Minsum Criteria. In: Proc. of the Second Workshop on Approximation and Online Algorithms, pp. 68–82 (2004)Google Scholar
  7. 7.
    Graham, R.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)Google Scholar
  8. 8.
    Gabow, H., Kariv, O.: Algorithms for edge coloring bipartite graphs and multigraphs. SIAM Journal of Computing 11(1) (February 1982)Google Scholar
  9. 9.
    Hall, J., Hartline, J., Karlin, A., Saia, J., Wilkes, J.: On Algorithms for Efficient Data Migration. In: Proc. of the 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 620–629 (2001)Google Scholar
  10. 10.
    Hall, L., Schulz, A.S., Shmoys, D.B., Wein, J.: Scheduling to Minimize Average Completion Time: Off-line and On-line Approximation Algorithms. Mathematics of Operations Research 22, 513–544 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Sum Coloring Interval Graphs and k-Claw Free Graphs with Applications for Scheduling Dependent Jobs. Algorithmica 37, 187–209 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hoogeveen, H., Schuurman, P., Woeginger, G.: Non-approximability Results For Scheduling Problems with Minsum Criteria. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 353–366. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Khuller, S., Kim, Y., Wan, Y.C.: Algorithms for Data Migration with Cloning. In: Proc. of the 22nd ACM Symposium on Principles of Database Systems, pp. 27–36 (2003)Google Scholar
  14. 14.
    Khuller, S., Kim, Y.-A., Malekian, A.: Improved algorithms for data migration. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX 2006 and RANDOM 2006. LNCS, vol. 4110, pp. 164–175. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Kim, Y.: Data Migration to Minimize the Average Completion Time. Journal of Algorithms 55, 42–57 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Marx, D.: Complexity results for minimum sum edge coloring (manuscript, 2004)Google Scholar
  17. 17.
    Nishizeki, T., Kashiwagi, K.: On the 1.1 edge-coloring of multigraphs. SIAM Journal on Discrete Mathematics 3(3), 391–410 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Queyranne, M.: Structure of a Simple Scheduling Polyhedron. Mathematical Programming 58, 263–285 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Queyranne, M., Sviridenko, M.: A (2 + ε)-Approximation Algorithm for Generalized Preemptive Open Shop Problem with Minsum Objective. Journal of Algorithms 45, 202–212 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Queyranne, M., Sviridenko, M.: Approximation Algorithms for Shop Scheduling Problems with Minsum Objective. Journal of Scheduling 5, 287–305 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Schulz, A.S.: Scheduling to Minimize Total Weighted Completion Time: Performance Guarantees of LP-based Heuristics and Lower Bounds. In: Cunningham, W.H., Queyranne, M., McCormick, S.T. (eds.) IPCO 1996. LNCS, vol. 1084, pp. 301–315. Springer, Heidelberg (1996)Google Scholar
  22. 22.
    Wolsey, L.: Mixed Integer Programming Formulations for Production Planning and Scheduling Problems. In: The 12th International Symposium on Mathematical Programming. MIT, Cambridge (1985) (invited talk)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rajiv Gandhi
    • 1
  • Julián Mestre
    • 2
  1. 1.Department of Computer ScienceRutgers University-CamdenCamdenUSA
  2. 2.Department of Computer ScienceUniversity of MarylandCollege ParkUSA

Personalised recommendations