Advertisement

Abstract

Motivated by applications in batch scheduling of interval jobs, processes in manufacturing systems and distributed computing, we study two related problems. Given is a set of jobs { J 1,...,J n }, where J j has the processing time p j , and an undirected intersection graph G =({ 1,2,...,n},E); there is an edge (i,j) ∈E if the pair of jobs J i and J j cannot be processed in the same batch. At any period of time, we can process a batch of jobs that forms an independent set in G. The batch completes its processing when the last job in the batch completes its execution. The goal is to minimize the sum of job completion times. Our two problems differ in the definition of completion time of a job within a given batch. In the first variant, a job completes its execution when its batch is completed, whereas in the second variant, a job completes execution when its own processing is completed.

For the first variant, we show that an adaptation of the greedy set cover algorithm gives a 4-approximation for perfect graphs. For the second variant, we give new or improved approximations for a number of different classes of graphs. The algorithms are of widely different genres (LP, greedy, subgraph covering), yet they curiously share a common feature in their use of randomized geometric partitioning.

Keywords

Completion Time Greedy Algorithm Line Graph Interval Graph Graph Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bar-Noy, A., Bellare, M., Halldórsson, M.M., Shachnai, H., Tamir, T.: On chromatic sums and distributed resource allocation. Inf. Comput. 140(2), 183–202 (1998)MATHCrossRefGoogle Scholar
  2. 2.
    Bar-Noy, A., Halldórsson, M.M., Kortsarz, G., Salman, R., Shachnai, H.: Sum multicoloring of graphs. J. of Algorithms 37(2), 422–450 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Brucker, P.: Scheduling Algorithms, 4th edn. Springer, Heidelberg (2004)MATHGoogle Scholar
  4. 4.
    Chvátal, V.: A greedy heuristic for the set-covering problem. Mathematics of Operations Research 4, 233–235 (1979)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Epstein, L., Halldórsson, M.M., Levin, A., Shachnai, H.: Weighted Sum Coloring in Batch Scheduling of Conflicting Jobs. Full version, http://www.cs.technion.ac.il/~hadas/PUB/cosum.pdf
  6. 6.
    Feige, U., Lovász, L., Tetali, P.: Approximating min sum set cover. Algorithmica 40(4), 219–234 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Frank, A.: On chain and antichain families of a partially ordered set. J. of Combinatorial Theory Series B 29, 176–184 (1980)MATHCrossRefGoogle Scholar
  8. 8.
    Gandhi, R., Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Improved Bounds for Sum Multicoloring and Scheduling Dependent Jobs with Minsum Criteria. In: Persiano, G., Solis-Oba, R. (eds.) WAOA 2004. LNCS, vol. 3351, pp. 68–82. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and intractability. W. H. Freeman and Company, New York (1979)MATHGoogle Scholar
  10. 10.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, London (1980)MATHGoogle Scholar
  11. 11.
    Halldórsson, M.M., Kortsarz, G., Shachnai, H.: Sum coloring interval and k-claw free graphs with application to scheduling dependent jobs. Algorithmica 37(3), 187–209 (2003)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hurkens, C.A.J., Schrijver, A.: On the size of systems of sets every t of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2, 68–72 (1989)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and System Sciences 9, 256–278 (1974)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Mathematics 13, 383–390 (1975)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Munagala, K., Babu, S., Motwani, R., Widom, J.: The pipelined set cover problem. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Nicoloso, S., Sarrafzadeh, M., Song, X.: On the sum coloring problem on interval graphs. Algorithmica 23(2), 109–126 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Schrijver, A.: Combinatorial optimization polyhedra and efficiency. Springer, Heidelberg (2003)MATHGoogle Scholar
  18. 18.
    Smith, W.E.: Various optimizers for single-stage production. Naval Research Logistics Quarterly 3, 59–66 (1956)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Woeginger, G.J.: When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. on Computing 12(1), 57–74 (2000)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Yannakakis, M., Gavril, F.: The maximum k-colorable subgraph problem for chordal graphs. Information Processing Letters 24(2), 133–137 (1987)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Leah Epstein
    • 1
  • Magnús M. Halldórsson
    • 2
  • Asaf Levin
    • 3
  • Hadas Shachnai
    • 4
  1. 1.Department of MathematicsUniversity of HaifaHaifaIsrael
  2. 2.Department of Computer ScienceUniversity of IcelandReykjavikIceland
  3. 3.Department of StatisticsThe Hebrew UniversityJerusalemIsrael
  4. 4.Department of Computer ScienceThe TechnionHaifaIsrael

Personalised recommendations