Advertisement

A Local Tangent Space Alignment Based Transductive Classification Algorithm

  • Jianwei Yin
  • Xiaoming Liu
  • Zhilin Feng
  • Jinxiang Dong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4087)

Abstract

LTSA (local tangent space alignment) is a recently proposed method for manifold learning, which can efficiently learn nonlinear embedding low-dimensional coordinates of high-dimensional data, and can also reconstruct high dimensional coordinates from embedding coordinates. But it ignores the label information conveyed by data samples, and can not be used for classification directly. In this paper, a transductive manifold classification method, called QLAT (LDA/QR and LTSA based Transductive classifier) is presented, which is based on LTSA and TCM-KNN (transduction confidence machine-k nearest neighbor). In the algorithm, local low-dimensional coordinates is constructed using 2-stage LDA/QR method, which not only utilize the label information of sample data, but also conquer the singularity problem of traditional LDA, then the global low-dimensional embedding manifold is obtained by local affine transforms, finally TCM-KNN method is used for classification on the low-dimensional manifold. Experiments on labeled and unlabeled mixed data set illustrate the effectiveness of the method.

Keywords

manifold learning local tangent space alignment transductive inference LDA/QR 

References

  1. 1.
    Seung, S., Daniel, D.L.: The manifold ways of perception. Science 290(5500), 2268–2269 (2000)CrossRefGoogle Scholar
  2. 2.
    Tenenbaum, J.B., de Silva, V., Langford, J.C.: A Global Geometric Framework for Nonlinear Dimensionality Reduction. Science 290(5500), 2319–2323 (2000)CrossRefGoogle Scholar
  3. 3.
    Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)CrossRefGoogle Scholar
  4. 4.
    David, L.D., Caroe, G.: Hessian eigenmaps Locally linear embedding techniques for high-dimensional data. Proceedings of the National Academy of Sciences of the United States of America 100(10), 5591–5596 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Zhang, Z.Y., Zha, H.Y.: Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. SIAM Journal of Scientific Computing 26(1), 313–338 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Yan, S.C., Zhang, H.J., Hu, Y.X., et al.: Discriminant Analysis on Embedded Manifold. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 121–132. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Proedrou, K., Nouretdinov, I., Vovk, V.: Transductive Confidence Machines for Pattern Recognition. In: Elomaa, T., Mannila, H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 381–390. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  8. 8.
    Li, F.Y., Wechsler, H.: Open Set Face Recognition Using Transduction. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(11), 1686–1697 (2005)CrossRefGoogle Scholar
  9. 9.
    Ye, J.P., Li, Q.: A two-stage linear discriminant analysis via QR-decomposition. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(6), 929–941 (2005)CrossRefGoogle Scholar
  10. 10.
    Min, W.L., Lu, K., He, X.F.: Locality pursuit embedding. Pattern Recognition 37(4), 781–788 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Wu, Y.M., Chan, K.L., Wang, L.: Face recognition based on discriminative manifold learning. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. 4, pp. 171–174 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jianwei Yin
    • 1
  • Xiaoming Liu
    • 1
  • Zhilin Feng
    • 1
    • 2
  • Jinxiang Dong
    • 1
  1. 1.Department of Computer Science and TechnologyZhejiang UniversityChina
  2. 2.Zhijiang CollegeZhejiang University of TechnologyHangzhouChina

Personalised recommendations