An Eye Detection System Based on Neural Autoassociators

  • Monica Bianchini
  • Lorenzo Sarti
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4087)


Automatic eye tracking is a challenging task, with numerous applications in biometrics, security, intelligent human–computer interfaces, and driver’s sleepiness detection systems. Eye localization and extraction is, therefore, the first step to the solution of such problems. In this paper, we present a new method, based on neural autoassociators, to solve the problem of detecting eyes from a facial image. A subset of the AR Database, collecting individuals both with or without glasses and with open or closed eyes, has been used for experiments and benchmarking. Preliminary experimental results are very promising and demonstrate the efficiency of the proposed eye localization system.


Facial Image Training Image Face Detection Hide Unit Equal Error Rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ward, D., McKay, D.: Fast hands–free writing by gaze direction. Nature 418(6900), 838 (2002)CrossRefGoogle Scholar
  2. 2.
    Eriksson, M., Papanikotopoulos, N.: Eye tracking for detection of driver fatigue. In: Proceedings of IEEE Int. Conf. on Intelligent Transportation Systems, pp. 314–319. IEEE, Los Alamitos (1997)Google Scholar
  3. 3.
    Ji, Q., Yang, X.: Real–time eye, gaze, and face pose tracking for monitoring driver vigilance. Real–Time Imaging 8(5), 357–377 (2002)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Hsu, R.-L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)CrossRefGoogle Scholar
  5. 5.
    Rizon, M., Kawaguchi, T.: Automatic eye detection using intensity and edge information. In: Proceedings IEEE TENCON, vol. 2, pp. 415–420. IEEE, Los Alamitos (2000)Google Scholar
  6. 6.
    Zhang, L., Lenders, P.: Knowledge–based eye detection for human face recognition. In: Proceedings of the 4th Int. Conf. on Knowledge–based Intelligent Systems & Allied Technologies, pp. 117–120. IEEE, Los Alamitos (2000)Google Scholar
  7. 7.
    Betke, M., Mullay, W.: Preliminary investigation of real–time monitoring of a driver in city traffic. In: Proceedings of IEEE Intelligent Vehicles Symposium, IEEE, Los Alamitos (2000)Google Scholar
  8. 8.
    Suandi, S.A., Enokida, S., Ejima, T.: An extended template matching technique for tracking eyes and mouth in real–time. In: Proceedings of Visualization, Imaging and Image Processing, pp. 586–591 (2003)Google Scholar
  9. 9.
    Kawaguchi, T., Hidaka, D., Rizon, M.: Detection of eyes from human faces by Hough transform and separability filter. In: Proceedings of Int. Conf. on Image Processing, pp. 49–52 (2000)Google Scholar
  10. 10.
    Sirohey, S., Rosenfeld, A.: Eye detection in a face image using linear and nonlinear filters. Pattern Recognition 34, 1367–1391 (2001)MATHCrossRefGoogle Scholar
  11. 11.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 586–591. IEEE, Los Alamitos (1991)CrossRefGoogle Scholar
  12. 12.
    Gonzalez, R., Woods, R.: Digital Image Processing. Addison-Wesley, Reading (1992)Google Scholar
  13. 13.
    Deng, X., Chang, C.-H., Brandle, E.: A new method for eye extraction from facial image. In: Proceedings of IEEE DELTA, IEEE, Los Alamitos (2004)Google Scholar
  14. 14.
    Maio, D., Maltoni, D.: Real–time face location on gray–scale static images. Pattern Recognition 33, 1525–1539 (2000)CrossRefGoogle Scholar
  15. 15.
    Yang, J., Lu, W., Waibel, A.: Skin–color modeling and adaptation. In: Chin, R., Pong, T.-C. (eds.) ACCV 1998. LNCS, vol. 1351, pp. 687–694. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  16. 16.
    Bianchini, M., Maggini, M., Sarti, L., Scarselli, F.: Recursive neural networks learn to localize faces. Pattern Recognition Letters 26, 1885–1895 (2005)CrossRefGoogle Scholar
  17. 17.
    Carleson, A., Cumby, C., Rosen, J., Roth, D.: The SNoW learning architecture. Tech. Rep. UIUCDCS–R–99–2101, University of Illinois at Urbana–Campaign Computer Science Department (1999)Google Scholar
  18. 18.
    Bianchini, M., Frasconi, P., Gori, M.: Learning in multilayered networks used as autoassociators. IEEE Transactions on Neural Networks 6(2), 512–515 (1995)CrossRefGoogle Scholar
  19. 19.
    Martinez, A., Benavente, R.: The AR face database. Tech. Rep. 24, CVC Technical Report (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Monica Bianchini
    • 1
  • Lorenzo Sarti
    • 1
  1. 1.Dipartimento di Ingegneria dell’InformazioneUniversità degli Studi di SienaSienaItaly

Personalised recommendations