Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
Book cover

IAPR Workshop on Artificial Neural Networks in Pattern Recognition

ANNPR 2006: Artificial Neural Networks in Pattern Recognition pp 11–20Cite as

  1. Home
  2. Artificial Neural Networks in Pattern Recognition
  3. Conference paper
Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition

Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition

  • Zouhour Neji Ben Salem20,
  • Laurent Bougrain21 &
  • Frédéric Alexandre21 
  • Conference paper
  • 988 Accesses

Part of the Lecture Notes in Computer Science book series (LNAI,volume 4087)

Abstract

In this paper, we compare two models biologically inspired and gathering spatio-temporal data coding, representation and processing. These models are based on Self-Organizing Map (SOM) yielding to a Spatio-Temporel Organization Map (STOM). More precisely, the map is trained using two different spatio-temporal algorithms taking their roots in biological researches: The ST-Kohonen and the Time-Organized Map (TOM). These algorithms use two kinds of spatio-temporal data coding. The first one is based on the domain of complex numbers, while the second is based on the ISI (Inter Spike Interval). STOM is experimented in the field of speech recognition in order to evaluate its performance for such time variable application and to prove that biological models are capable of giving good results as stochastic and hybrid ones.

Keywords

  • Speech Recognition
  • Speech Signal
  • Automatic Speech Recognition
  • Inter Spike Interval
  • Digit Recognition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Download conference paper PDF

References

  1. Agmon-Snir, H., Segev, I.: Signal Delay and iInput Synchronization in Passive Dendritic Structures. Journal of Neurophysiology 70(5) (1973)

    Google Scholar 

  2. Cariani, P.: As If Time Really Mattered: Temporal Strategies for Neural Coding of Sensory Information. CC-AI 12(1-2) (1995)

    Google Scholar 

  3. Spengler, F., Hilger, T., Wang, X., Merzenich, M.: Learning induced formation of cortical populations involved in tactile object recognition. Social Neurosciences 22, 105–110 (1999)

    Google Scholar 

  4. Wilson, H., Cowan, J.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Biology Cybernetic 13, 55–80 (1973)

    Google Scholar 

  5. Amari, S.: Topographic organization of nerve fields. Bull Math Biology 42, 339–364 (1980)

    MATH  MathSciNet  Google Scholar 

  6. Szentagothai, J.: The module concept in cerebral cortex architecture. Brain research, 47–496 (1995)

    Google Scholar 

  7. Vinh ho, H.: Un reseau de neurons a decharge pour la reconnaissance des processus spatio-temporels. PhD thesis, Genie Electric Department, Monreal University (1992)

    Google Scholar 

  8. Wiemer, J., Spengler, F., Joublin, F., Wacquant, S.: Learning cortical topography from spatiotemporal stimuli. Biology cybernetic 82, 173–187 (2000)

    CrossRef  Google Scholar 

  9. Casti, A.R.R., Omurtag, A., Sornborger, A., Aplan, E., Knight, B., Victor, J., Sirovich, L.: A population study of integrate and fire or burst neuron. Neural Computation 14(5) (2002)

    Google Scholar 

  10. Laurence, S., Tsoi, A.C., Back, A.D.: The gamma MLP for speech phoneme recognition. Advances in Neural Information Processing System 8, 785–791 (1996)

    Google Scholar 

  11. Wiemer, J.C.: The Time-Organized Map (TOM) algorithm: extending the self-organizing map (SOM) to spatiotemporal signals. Neural Networks 15 (2003)

    Google Scholar 

  12. Vaucher, G.: A la recherche d’une algerbre neuronale spatio-temporal. P.hD thesis. Nancy University (1996)

    Google Scholar 

  13. Mozayyani, N., Alanou, V., Derfus, J., Vaucher, G.: A spatio-temporal data coding applied to kohonen maps. In: Inter. conf. on Artificial Neural Network, pp. 75–79 (1995)

    Google Scholar 

  14. Baig, A.B.: Une approche methodologique de l’utilisation des STAN applique a la reconnaissance visuelle de la parole. PhD thesis, Suplec, campus universitaire de rennes (2000)

    Google Scholar 

  15. Vaucher, G.: A Complex-Valued spiking machine. In: Kaynak, O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 967–976. Springer, Heidelberg (2003)

    CrossRef  Google Scholar 

  16. Thorpe, S.: Spiking arrival times: A highly efficient coding scheme for neural networks. In: Parallel Processing in Neural System, Elseiver Press, Amsterdam (1990)

    Google Scholar 

  17. Rall, W.: Core conductor theory and cable properties. In: Handbook of physiology: the nervous system, Americain physiology society (1977)

    Google Scholar 

  18. Calliope. La parole et son traitement automatique. Masson, Paris, Milan, Barcelone (1989)

    Google Scholar 

  19. Durand, S.: Learning speech as acoustic sequences with the unsupervised model TOM. In: NEURAP, 8th international conference on neural networks and their applications, Marseille french (1995)

    Google Scholar 

  20. Béroulle, D.: Un modèle de mémoire adaptative, dynamique et associative, pour le traitement automatique de la parole. Thèse de l’université de Paris 11 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. AI Unit, CRISTAL Laratory, National School of Computer Sciences, Manouba Campus, Tunisia

    Zouhour Neji Ben Salem

  2. Cortex Team, LORIA Laboratory, Nancy, France

    Laurent Bougrain & Frédéric Alexandre

Authors
  1. Zouhour Neji Ben Salem
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Laurent Bougrain
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Frédéric Alexandre
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Institute of Neural Information Processing, University of Ulm, D-89069, Ulm, Germany

    Friedhelm Schwenker

  2. Dipartimento di Sistemi e Informatica, Università di Firenze, Via di Santa Marta 3, 50139, Firenze, Italy

    Simone Marinai

Rights and permissions

Reprints and Permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Salem, Z.N.B., Bougrain, L., Alexandre, F. (2006). Comparison Between Two Spatio-Temporal Organization Maps for Speech Recognition. In: Schwenker, F., Marinai, S. (eds) Artificial Neural Networks in Pattern Recognition. ANNPR 2006. Lecture Notes in Computer Science(), vol 4087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11829898_2

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/11829898_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37951-5

  • Online ISBN: 978-3-540-37952-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2023 Springer Nature